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The effects of different types of boundaries on graphite fragments are considered as they influence the
π-electrons. From a simple resonance theoretic argument there are proposed simple structural conditions
governing the occurrence of “unpaired”π-electron density near the edges. Predictions based on these rules
are made for a variety of edge structures. Further, the novel resonance theoretic argument and predictions are
strengthened through more elaborate considerations of both the valence bond and molecular orbital theoretic
nature, especially for translationally symmetric polymer strips with various types of edges.

1. Introduction

Graphite and the behavior of theπ-electrons therein has long
been of interest. Most of the theoretical work has focused on
the bulk properties. Within the simple Hu¨ckel molecular orbital
(MO) framework, solutions1,2 for the π-electron bands of
extended systems go back about 5 decades, with hundreds of
more recent articles. On the other hand more successful
quantitative work within a resonating valence bond (VB)
framework for such extended systems is more recent, perhaps
starting a decade back,3 but now with very much work as
reviewed in ref 4. And the whole area of conjugatedπ-networks
is of continuing intense interest, especially with the advent of
fullerenes and “buckytubes”, and the possibilities5 of related
nanostructural devices.

Real graphite has boundaries or edges, and often markedly
so, in the sense that most graphite is rather impure, consisting
of smaller pieces or having rather many imperfections that may
often be viewed to introduce an additional (internal) boundary
edge. Experimentally occurring graphites seem typically to be
ill-characterized in terms of the nature of the edges or of the
imperfections and instead often seem to be characterized6,7 in
terms of a few bulk properties and methods of preparation. Thus,
theoretical work on the effect of different graphitic boundary
structures on the behavior of theπ-electrons may be especially
valuable, particularly if simple rules can be discerned. Further,
such work should also be of much use for the characterization
of carbon nanostructures.5

Here, simple rules concerning the effect of different types of
edge structures on theπ-electrons are sought. As so thoroughly
illustrated by Pauling,8 resonance theory offers a ready method
to qualitatively treat many molecular species, and in the
approach to be taken in section 2 here, a modified simple version
of this resonance theoretic view is used. From this approach a
simple method emerges to correlate molecular and electronic
structure at graphitic edges. The resultant rules stated in section
3 are quite simple, though they do not seem to have previously
been so fully articulated. The application of the rules to a number
of particular cases is illustrated, and they are also noted to make
some rather general predictions concerning unpaired spin
densities for different translationally symmetric edges on

graphite. These simple rules of section 3 may be applied without
reference to any other sections concerning their theoretical
justification.

The simple resonance theoretic based picture is elaborated
in more theoretical detail in sections 4 (from a VB viewpoint)
and 5 (from an MO viewpoint). Basically, with closer attention
to Kekule structures, section 4 provides deeper VB theoretic
evidence, following some earlier work;9 that is, a more detailed
foundation is pursued for the implicitly averaged effects of
Kekule structures utilized in the picture of section 2. But the
VB theoretic approach contrasts with the conventional quantum
chemical approach for the treatment of molecular structures,
including edges or surfaces, such being by way of MO or band
theory. For example, in reviews 10 and 11 concerning the
electronic structure at surfaces or in the particular cases studied
in refs 12-14 on the characterization of the electronic structure
of graphitic edges, there is no mention of resonance theory or
VB theory. Now with such alternative MO theoretic schemes,
systems are usually treated on a case-by-case computational
manner so that rules emerging from it would be more or less
empirical, with the MO computations playing the part of
(computer) experiments. Section 5 considers some theoretical
and computational evidence from a simple Hu¨ckel MO theoretic
framework, with these arguments being brought to a reasonable
conclusion only through the inclusion of electron-electron
interactions, most simply using an unrestricted Hartree-Fock
solution to a Hubbard-PPP model. Such computed MO band
theoretic results12-16 turn out in the cases so far investigated to
be in close agreement with the simple resonance theoretic
picture, and there is a degree of agreement with some other
particular MO computations17-19 on large benzenoids. A number
of band theoretical results consistent with the resonance theoretic
picture are also established in a general manner in which the
unpaired electrons appear in this alternative approach emerging
(and explaining a number of earlier special case observations).
Overall, the simple rules of section 3 seem to be generally
supported via both VB and MO theoretic evidence.

Throughout the present considerations theσ-network is
considered only insofar as providing a frame in which the
π-electrons are to move. Of course, with edges there are
σ-electrons on the edge also and if allowed to “dangle” could
conceivably contribute to a reconstruction of the edge to a
“nonclassical” structure. Here, it is imagined that no such
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reconstruction occurs so that the structure of the network up to
the edge is just a subsection of an infinite graphite sheet. That
is, the structures presently presumed are to be just that of
subsections of the honeycomb lattice. One might imagine the
σ-electrons from the carbons at the edges to be bonded to some
terminating atoms such as H atoms. If bonded to O atoms or
OH groups, there are of course additionalπ-electrons to take
into account, but this is to be left for future consideration, though
it is surmised that similar ideas can apply. Indeed, resonance
theoretic ideas should presumably be of interest in a more
general materials science context, for though Pauling’s work
in a qualitative mode on finite molecules seems well accepted
in some quarters, comparatively less use seems to be accepted
as successful in treating extended solid-state or polymeric
systems.

2. Resonance Theory for Graphitic Edges

Conventional qualitative resonance theory8,9,20,21is based on
the consideration of sets of different classical chemical bonding
patterns consistent with the given structure. Further, the greater
the number of such low-energy VB patterns the greater the
stabilization (because of configuration interaction among them).
And of course an individual VB bonding pattern is lower in
energy the greater the number of neighboring singlet spin-paired
bonds there are. Thus, there are two tendencies competing to
maximize overall energetic stability: maximization of the
number of neighbor-paired sites and maximization of the number
of resonance structures. Thus, since the edge is such a small
fraction of the bulk (if the graphitic fragments are large), one
might allow nonneighbor-paired sites confined to the region of
the edges if this circumstance notably enhances the number of
VB bonding patterns. That is, resonance stabilization in theN
atom bulk might overcome the loss of these relatively few∼N1/2

unpairedπ-electrons near the edge. [At least for “ordinary”
shaped fragments, the boundary should have∼N1/2 atoms.]

Thus, the argument devolves to the consideration of classes
of VB bonding patterns with satisfaction of the first rule above,
indicating that any nonneighbor-paired sites should be confined
to the edge region. Then in consequence of the second rule
above, such classes having the greatest numbers of members
are sought. But in fact the characterization of the class with the
most numerous Kekule bonding patterns is somewhat intuitively
clear; resonance should be greatest when the bonding patterns
are as delocalized as possible. That is, one might anticipate (and
correctly so, as elaborated in the section 4) that in the bulk region
the probability of a double bond along any one of the three
directions away from a site to its nearest neighbors is equally
likely. This probability is essentially a bond order as often
defined22 in treating benzenoids; thePauling bond orderfor a
given bond of a conjugated hydrocarbon is just the fraction of
the (fully paired) Kekule structures for which the given bond
is double. Thus, the preferred classes of VB bonding patterns
for large graphitic fragments should be those such that the
π-bond orders are very close to1/3 in the bulk of the fragment.

But now there are notable consequences if theπ-bond orders
are close to1/3 in the bulk and if any deficit of the sum of the
bond orders at any site near the edge represents nonneighbor-
paired electron density. This deficit might be termed aresidual
freeValence. Thus, near the edge one can identify as in Figure
1 different local arrangements for bond orders if the connections
toward the interior have a bond order of1/3. Here, edge bonds
are allowed to have values differing from1/3 if it leads to a
more complete saturation of the free valence, remnant nonzero
values of which are indicated in small circles marking the

associated sites. Thus, it is seen that different types of edge
structures lead to different amounts of free valence at the
edges.

A further refinement concerns the range of any pairing
between nonneighbor sites. If the distance between two non-
neighbor sites is smaller, then such a pattern being more similar
to a preferred neighbor-pairing pattern is more stabilizing than
a pattern with free valences, which are necessarily very distant.
But in the implementation of these ideas, it is important to note
the following: first, that the graphite lattice isbipartite in the
sense that23 it can be divided into two subsets (usually called
starredandunstarred) such that any site from one subset has
its neighbors solely in the other subset; and second, that the
singlet spin pairing is24 preferred solely between sites in different
subsets. Free valences on a boundary can then be (partly) satiated
by nearby free valences only if they are located on different
types of sites (i.e., starred vs unstarred sites). That is, the free
valences on the starred and unstarred sites might be identified
with “+” and “-” signedspin densities, with spin pairing only
between oppositely signed spin densities, with the strength of
the pairing diminishing with separation. Thus, for the different
kinds of regular (i.e., translationally symmetric) edges appearing
in Figure 2, there is pairing between either nearest neighbors
or next-next-nearest neighbors so that these edges are not so
reactive, most especially that in Figure 2a. Likewise, for the
different types of regular edges in Figure 3 there is pairing
possible only to some distant sites, say on an opposite edge, so
that these edges (being presumed distant) are reactive and exhibit
essentially unpaired spin density localized along the edges of
the fragment; that is, these edges arepolyradicaloid. Moreover,
these ideas apply to characterize many other types of edges.
And the overall argument may be expressed as a simple set of
rules presented (and applied in the next section).

3. Local Unpaired Spin Density: Rules, Application, and
Discussion

The discussion of the preceding section leads to simple rules
for edge-localized spin density. For the special case of trans-
lationally symmetric edges there are especially simple purely
structural rules, where details of the underlying resonance
theoretic picture have been refined away, as in eq 3.2, but first
a set of slightly more general rules with attention to the zero-
order resonance theoretic picture and with wider applicability
are given. From the preceding discussion the following are the
simple rules.

(a) Assignπ-bond orders of1/3 to each edge issuing from a
site of degree 3.

Figure 1. Different possible local types of graphitic boundary
structures, along with any presumed (zero-order)π-bond orders differing
from 1/3 and residual (zero-order) free valences, which are encircled.
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(b) Assign the remainingπ-bond orders to be as large as
possible subject to the constraint that the sum of theπ-bond
orders of no site exceeds 1.

(c) Calculate zero-order free valencesVi at each sitei as the
deficit from 1 of the sum of theπ-bond orderspe incident at
that site (i.e.,Vi ) 1 - ∑e∼ipe ).

(d) The unpaired spin density at an edge is the difference
between the net free valence of starred and unstarred sites nearby
on an edge.

Again, a refinement of the last two rules would take more
explicit account for pairing between next-next-nearest neighbors
(or perhaps even a little more distant), thereby identifying
generally more accurately the unpaired spin density and its
location.

As these rules stand they are rather simple to apply, which
we have done for the edges of Figures 2-4. The more
comprehensive listing of Figure 4 identifies just a unit cell of
edge (where the structures of the more extended representations
of Figures 2 and 3 are repeated). These unit cells are
conveniently labeled by the primitive translations along the edge
direction, such a label being a two-digit code (x,y) with x
identifying the number of hexagon center to neighbor hexagon
center steps along one direction imagined to be from left to
right and y identifying the number of similar steps along a
second direction rotated 60° counterclockwise. It is a matter of
convention to choose

These associated translation symmetry labels and the consequent
predicted numbers #u of unpaired electrons per unit cell of edge
as pictured in Figure 4 are reported in Table 1. And the last
column of the table is discussed in section 5. It is seen from

the table that thrice the number of unpaired electrons per unit
cell is always an integer.

The resultant predictions for such translationally symmetric
edges can be given an even simpler purely structural presenta-
tion. Rule d uses the phrase “nearby”, which for the case of
translational symmetry can be given a quite precise formal
meaning in terms of sites within the same unit cell of edge.
Further, for the net spin density, the precise locality of the
unpaired spins does not matter, so one might use just a zero-
order picture with a bond order of1/3 (initially) assigned to every
bond, and the corresponding zero-order free valences are 0,1/3,
2/3, or 1 for sites of degreed ) 3, 2, 1, or 0, though of course
we still need to pay attention to further pairing between opposite
types of sites. The results can be neatly expressed in terms of
the numbers #fd and #od of starred and unstarred sites of degree
d per unit cell, where the number #u of unpaired electrons per
unit cell of edge is seen to be predicted to be

which is a purely structural condition. There is a further result
that allows one to exclude many symmetry classes of edges
from ever being nonradical, namely, the symmetry-integrality
theorem: Within the simple resonance theoretic picture as
applied to translationally symmetric edges of symmetry class
(x,y), the number #u of unpaired electrons per unit cell is an
integer if and only ifx - y is a multiple of 3. A proof is given
in Appendix A. Stable (nonradical) translationally symmetric
edges can occur only among those of symmetry classes (x,y)
with x - y divisible by 3.

For the polyradicaloid case the unpaired spin densities are
not necessarily so severely localized as one might surmise from
such rules (as illustrated in Figure 3). That is, one can imagine
the free valences locally moved around to other nearby atoms,
say as done in Figure 5. But the free valence on a particular
type (starred or unstarred) of site is conserved (as is more or
less empirically evident but which is also shown in section 3),
and the farther the free valences are moved the greater the region
where there is less maximally resonant bulk material with
π-bond orders of1/3 in each direction. That is, the net unpaired
spin densities are not completely localized but tend to stick near
the boundary to the same types of sites. But rearranging the
bond orders and allowing the free valences to be more smeared
out still gives rise to the same numbers of unpaired electrons
near the edge. That is, without even explicit construction of
Kekule structures predictions are readily reached as to the extent
of unpaired electrons showing up on a given type of graphitic
edge, and some indication is obtained of where it shows up.

Of course, sites with higher residual free valences should be
more reactive. That is, if an edge forms with higher free valence
values, then one can anticipate that the edge is reactive,
preferably forming, say through addition reactions, new local
structures that exhibit less free valence. Therefore, there are
implications as to the types of stabilized edges as could appear
on large graphite fragments. Also, unpaired electrons at the
edges should enhance a material’s paramagnetism, which is in
fact observed for some graphites, with some graphitic materials
showing7 exceptional paramagnetism perhaps because of unusual
edge structures. Further, there should be implications for regular
conjugated hydrocarbon polymer strips, several simpler types
of which have received much experimental treatment over the
last couple of decades, notably polyacetylene25 and poly-p-
phenylene.26 Indeed, similar ideas apply to correlating locally
unpaired spin densities at the ends of polymer strips with the

Figure 2. Portions of different types of translationally symmetric
graphitic edges giving rise to no net spin density at the edges. The
zero-order non-1/3 bond orders at the edges are indicated, as also are
the associated zero-order free valences, which for the cases shown can
be paired between nonneighbor starred and unstarred sites as indicated
by dotted lines.

0 < x g y g 0 (3.1)

#u )|{2
3
#f1 + 1

3
#f2} - {2

3
#o1 + 1

3
#o2}| (3.2)
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type of strip structure and the various end structures, but this
we do not pursue here, it having already been done3,27 in the
more elaborated format of section 4.

4. Resonating VB Theoretic Refinement

Notably much of the resonance theoretic argument of the
preceding section can be made a little more complete, following
more traditional resonating VB theoretic lines with a more
explicit consideration of “Kekule structures”, such as already
considered somewhat in ref 8. OftenKekule structuresare
viewed28 to be VB bonding patterns wherein every site is paired
to a unique neighbor. But in order to treat radicaloid systems,
this constraint is relaxed for the condition that there be a
maximal pairing of neighbors (where some may be left unpaired
as when there are an excess of starred sites over unstarred sites).
Here, we term maximally paired bonding patternsglobalKekule
structures and utilize even more weakly constrainedbulkKekule
structures, which are to have all sites neighbor-paired except
perhaps some few at the edges. It is the distinction between
these global and bulk structures that is crucial in the present
context. Now one naturally anticipates that Kekule structure
counts should bemultiplicatiVe in the sense that for the case of
two disconnected fragments A and B each with countsKA and
KB the overall count isKAB ) KAKB, so especially for a large
N site system G with countKG it is appropriate to deal with the
Kekule structure count per site defined as

And whether nonneighbor-paired spins near an edge occur then
is a question that involves the consideration of the bulk values
for κ. In particular, it is to be considered howκ depends on the
type of edge if all sites are required to be neighbor-paired (as
in a global Kekule structure) and how this deviates from the
maximum value ofκ otherwise attainable allowing only a few
unpaired sites near the edge.

That such different bulk values ofκ are possible has to do
with a long-range order that occurs for Kekule structures and
that can be characterized in terms of a “cut” that divides the
molecularπ-network graph G in two. Acut is a subsetC of
neighbor pairs of sites of G such that if the bonds of the site
pairs of C are deleted from G, then the graph falls into two
disconnected pieces, say A and B. Further, given a cutC, there

is an associatedcut partitioning into two subsetsCf andCO,
since the A end of a neighbor pair ofC is starred or unstarred.
An example of a cutC on pyrene is indicated by the dotted
line in Figure 6; i.e., the bonds intersected by the dotted line
are those inC. The associated cut partitioning ofC is CfxCO

) {{1,2}}x{{5,6},{11,10}}. Note that the net partitioning of
C is independent; the first of which set of sites are called starred
or unstarred; and second of which the subgraph is taken as A
or B (though what is calledCf andCO might be interchanged).
A given (global) Kekule structureK may be thought of as a
certain subset of graph edges, some of which may be common
to a given cutC, and one may define a particular characteristic

That is,∆(C,K) can be described as the difference in numbers
of π-bonds ofK identified as neighbor pairs ofCf and ofCO.
A cut C for the case of phenanthrene is in Figure 7, indicated
as a dotted line in each of the five (global) Kekule structures.
In this case one of the two setsCf or CO is empty and the
difference between their orders is(1 (for every Kekule
structure). Now the Kekule structure invariants of interest may
be characterized in a theorematic form as the pairing conserva-
tion theorem: Let G be a bipartite graph with a cutC and a cut
partitioning intoCf andCO. Then every global Kekule structure
of G has the same difference∆(C) in numbers ofπ-bonds
identified as neighbor pairs ofCf and ofCO.

This theorem, which assertsK independence of∆(C,K)
) ∆(C), is proved in the Appendix B. That is, despite the
seeming disorder ofπ-bond arrangement among the different
global Kekule structures, there is something that is “conserved”,
and conservation principles typically have important conse-
quences.

The relevance of this cut invariant is illustrated for a polymer
strip as in Figure 8 where there is identified a (translationally
equivalent) sequence of local cutsCloc each marking a boundary
of a unit cell. Since each such local cut is (translationally)
equivalent, one might expect that the∆(Cloc) at every boundary
should be the same, and this indeed is the case, as is illustrated
for two Kekule structures also shown in Figure 8. But the two
different Kekule structures shown have different values for∆-
(Cloc), as can be consistent with the theorem only in the
following certain circumstances: if the Kekule structures are

Figure 3. Portions of different types of translationally symmetric graphitic edges giving rise to nonzero net spin density at the edges. The zero-
order non-1/3 bond orders at the edges are indicated, as also are the associated zero-order free valences, which here (being on like type sites) remain
unpaired.

κ ≡ KG
1/N (4.1)

∆(C,K) ≡ ||(K∩Cf)| - |(K∩CO)|| (4.2)
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not global and at least one has some unpaired sites at the ends
of the polymer chain; if the two Kekule structures are global,
they occur on two polymer chains differing slightly in their end
structures; if the polymer has cyclic boundary conditions, where
it takes two of the unit cell boundaries to make a complete cut
Ccom consisting of two local cuts so that the two global Kekule
structures end up having the same∆(Ccom) ()0 if the two local
cuts are translationally related).

Indeed, in the earlier treatment29 developing some aspects of
the present theorem, the system (though not necessarily trans-
lationally symmetric) was imagined to be embedded within the
“dough” of a doughnut (i.e., a solid torus) such that linked sites
were spatially close, and a cut was local so as not to disconnect
the doughnut; all this avoided any discussion of our bulk Kekule
structures or edges, as made convenient the consideration of
the bulk consequences of the ordering. In any event with the

Figure 4. Unit cell portions of various possible graphitic edges, with the vertical dashed lines indicating the boundaries of the unit cells. Nonneighbor
pairing between sites unpaired in zero-order is indicated with (nonvertical) dashed lines.

5200 J. Phys. Chem. A, Vol. 103, No. 26, 1999 Klein and Bytautas



consideration of bulk Kekule structures one can still define a
local difference∆(Cloc) though now different values are possible,
but structuresK with different values of ∆(Cloc) differ
everywhere in the bulk of the material and so must be essentially
noninteracting (as long as interactions are local). Thus, the bulk
Kekule structures fall into differentresonance classesassociated
with different values of∆(Cloc). Because of the lack of
interaction between bulk Kekule structures of different resonance
classes, there is a separate ground state associated with each
such class. These different resonance classes each have their
own Kekule structure countκ per site so that often one will
have (exponentially) more structures and be preferred (in giving
rise to a lower energy, more resonant ground state) even if this
leads to unpaired electrons at the polymer strip ends. Moreover,
these considerations lead rather directly to interesting possibili-
ties for solitonic excitations, as discussed elsewhere.27

A crucial point of consideration in the argument of the
preceding section is the manner of dependence of the resonance
energy on the number of Kekule structures and in particular on
κ. Given a Kekule structure, its interaction with others (i.e., its
resonance) is governed by the number of ways of making a
small local modification to change it to another Kekule structure.
One such local change is an alternation of the pattern of bonding
around a conjugated six-circuit (this being a hexagonal ring with
alternating single and double bonds), as illustrated in Figure 9.
Evidently, resonance energy should involve an average over
all Kekule structures (within one resonance class) of the number
of such local patterns of modification. Indeed, the so-called
“conjugated circuits” model30 is formulated to manifest this quite
explicitly. But the usual Pauling-Wheland resonance theoretic
VB model on the basis of Kekule structures manifests this class-
confined interaction,3,9,27 just with a more involved sort of
averaging. For typical highly resonant Kekule structures, this
average number of possible local modifications should scale
with the numberN of sites, and indeed, this clearly is a bound
for the rapidity of scaling. Now also this average number (∼N)
of such local modifications to yield new Kekule structures
should be qualitatively related to the numberκ of Kekule
structures per site. Indeed, if one imagines that the number of
local changes that can be made independently also is of the

form ∼cN, then the number of Kekule structures that may be
made from a typical Kekule structure is∼2cN, since one either
makes or does not make the change in each of the∼cN
independent positions. But also the number of Kekule structures
must be bound by∼3N/2 (where we imagine that each of the
∼N/2 starred site has no more than three choices for which the
unstarred site is to be paired to in a Kekule structure). Thus,
the number of Kekule structures for the more highly resonant
Kekule structure classes should scale asκN with κ > 1 and
typically with a greater value forκ the greater the resonance
energy per site. Indeed, this is quantitatively shown3 as a
function of resonance class for a sequence of strips. Typically,
log κ should be roughly proportional to the resonance energy
per site, and in particular, the resonance classes with largerκ

should be more stable (i.e., have higher resonance energy).
Another crucial consideration in the argument of the preced-

ing section is that pairing is dominated by that between sites of
different types (starred or unstarred), with nearer such pairings
giving rise to greater stabilization and larger exchange-mediated
splittings among states of different spin multiplicities. First, very
distant singlet spin pairings act much the same as triplet pairings
or no pairings. That is, if distant singlet spin pairings in a wave
function are replaced by triplet pairings, there is little effect on
the energy, since the coupling to anything with nearby pairings
instead is very weak; either the direct interaction in the
HamiltonianHVB is very small or it takes many applications of
neighbor exchange interactions inHVB to bring the pairing to
nearby sites. Thus, pairings from one side of a wide strip to the
other may be neglected and the spins so involved may be
effectively viewed as unpaired. Indeed, for such unpaired spins
on a wide strip, one may expect them to act just as a modified
strip would with the far side of the strip having no locally
unpaired spins.

Some aspects of the present argument are identifiable in
earlier work. A notable part of the present discussion is found
in ref 27, but also some other aspects are found elsewhere
without recognition of their relevance. For example, Yen,31

Gordon, and Davison,32 Elser,33 and Stein and Brown17 with
different special boundaries find Kekule structure counts per
site that are smaller than the “proper” bulk value found when
there are either no boundaries (i.e., cyclic boundary conditions)
as in ref 34 or suitable boundaries (as that in Figure 2a).27 That
is, refs 17 and 31-33 in essence count what we have termed
global Kekule structures associated with nonmaximally resonant
resonance classes, whereas the different counts of ref 34 are
for all classes (which asymptotically are essentially the maxi-
mally resonant resonance classes).

Finally, there is a kind of check on the preceding arguments,
since for a molecule it leads to a prediction of the global spin
symmetry, which may be compared to more exacting results.
That is, taking into account spin pairings regardless of their
range, the number #un of unpaired electrons for a molecule as
a whole may be calculated in terms of the zero-order free
valences for the different types of sites. Then the relation of eq
3.2 still holds if #u, #fd, and #od denote the numbers per unit
cell rather than per molecule (or alternatively, we might view
the molecule as a whole as consisting of just one unit cell).
Now recalling that every bond has one starred and one unstarred
end, counting bonds can be done in two ways: by counting the
dangling bonds out of starred sites (thereby giving #f1 + 2#f2

+ 3#f3) and by counting the number of dangling bonds out of
unstarred sites (thereby giving #o1 + 2#o2 + 3#o3). Thus,

Figure 5. Modified assignment of bond orders for the same boundary
as in Figure 3b. Note, however, that the same amount of residual free
valence (on the same type of sites) remains.

Figure 6. Example cutC on pyrene.

#f1 + 2#f2 + 3#f3 ) #o1 + 2#o2 + 3#o3 (4.3)
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and of course, the total number of starred and unstarred sites
are respectively given as

Then using relations 4.3 and 4.4, one may reexpress eq 3.2 as
the number of globally unpaired spins in a simple form

But with the identification of half of this as the net ground-
state spin (each unpaired electron contributing a spin of 1/2 to
the net spin), one recovers a rigorous theorematic35 result for
the nearest-neighbor (spin1/2) Heisenberg model, which in fact
is equivalent to the Pauling-Wheland VB model on the full
covalent space. In fact, this result for the ground-state spin also
agrees with the exact theorematic result for the Hubbard model,36

with full configuration interaction computations37 on Hubbard-
PPP for a fairly comprehensive list of structures up to around

a dozen sites and with several high-quality configuration
interaction ab initio computations (as mentioned in reviews 38
and 39). Indeed, for conjugated hydrocarbons the number of
cases of experimental disagreement with this simple rule seem
to be much fewer than the cases of agreement (also as mentioned
in reviews 38 and 39). Therefore, this agreement lends support
to our resonance theoretic arguments (which not only predict
but also indicate to some degree the location of unpaired spins
and in some cases the strength of spin pairings, which, if
between distant sites, lead to low-lying excited states where these
weakly paired sites are unpaired). Also, theorematic results for
the sign of the spin density on the starred and unstarred sites
are available40 and are in qualitative agreement with the simple
resonance theoretic model.

5. MO Theoretic Arguments

Quantitative MO theoretic arguments and computations are
on the whole more conventionally made than are VB theoretic
arguments and computations. There are different manners of
establishing MO theoretic results, but in the treatment of edge
localization effects the most common approach so far explored
attempts to treat different translationally symmetric edges
individually. In particular, polymer strips of arbitrary widthw
and with edges as in Figures 2a, 3a,b,d, and 4w have been
previously treated,12-16 and (along with further work here) a
general pattern of behavior emerges. Basically, bands labeled
with a one-dimensional wave vectork (corresponding to the
translational symmetry along the polymer strip) arise and
typically give orbitals that are smeared out not only along the
length of the polymer strip but usually also across the strip.

Figure 7. Phenanthrene cut with partitioningCfxCO and the five associated Kekule structures.

Figure 8. Polymer strip with Kekule structures each with a different number (0 and 1) ofπ-bonds crossing every unit cell boundary (and therefore
in two different resonance classes).

Figure 9. Two Kekule structures locally differing only at a single
hexagon in the interior.

#f ) #f1 + #f2 + #f3 and #o ) #o1 + #o2 + #o3 (4.4)

#u ) |#f - #o| (4.5)
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Still, occasionally there are portions of some bands that are
exceptional; theseedge-localizedorbitals, though smeared out
along the length of the polymer, fall off overall exponentially
in amplitude with distance from the edges and are very nearly
nonbonding (rapidly approaching nonbondedness exponentially
with strip width). For instance, within the Hu¨ckel theoretic
approximation for the polyacenic edges of Figure 3a the band
energiesε ≡ |â|ε appear as indicated in Figure 10 with the bulk
of the bands for any widthw being confined to the shaded
regions indicated there. Indeed, there is but a portion of a single
bonding band (and a single corresponding antibonding band)
that penetrates outside this shaded region, and it is that of the
exceptional orbitals. This exceptional band portion is shown
for the case of widthsw ) 1, w ) 2, w ) 3, andw ) 4 in the
first, second, third, and fourth quadrants of theε vs k plot of
the figure, where one sees that this exceptional band portion
tends to close in on the nonbondingε ) 0 Fermi level in the
region where 2π/3 < |k| < π as the strip widthw increases.
Figure 11 shows the mean density (averaged over neighboring
starred and unstarred sites) across aw ) 20 strip for the bonding
orbitals of exceptional type atk ) 0.75π, 0.85π, and 0.95π,

where one sees that the degree of edge localization is different
at differentk values; for the present type of edge, localization
is stronger for larger|k| values. The exceptional antibonding
orbitals give much the same densities as the bonding orbitals,
since these bonding and antibonding orbitals differ in amplitudes
only in being symmetric or antisymmetric across the strip, where
the node for the antisymmetric case occurs in the region where
even for the symmetric orbital the amplitude is very small (in
magnitude). Generally, symmetric/antisymmetric pairs of edge-
localized band orbitals approach degeneracy asw increases, and
if one is bonding while the other is antibonding, then the
asymptotic degeneracy occurs atε ) 0, as is discussed in
Appendix C. Now any of the exceptional bonding and anti-
bonding near-degenerate band orbitals (if combined to exhibit
localization near just one edge) may be singly occupied with
orbitals of different spins for different edges to yield a UHF
wave function, which may be argued to be of lower energy than
the (Hückel theoretic) RHF solution. That is, the cost of the
UHF wave function to the Hu¨ckel part of the energy of an orbital
of wave vectork is proportional to the corresponding band gap
∆k, which comes ever closer to 0 for ever wider strips when
dealing with the noted exceptional edge-localized orbitals; on
the other hand, electron repulsion energy (proportional to the
Hubbard parameterU) is in such cases saved, since the UHF
orbitals on opposing edges are well separated with differential
overlap between orbitals on opposite edges decreasing expo-
nentially quickly asw increases. Thus, any such exceptional
band orbitals give rise (in the UHF approximation for a
Hubbard-PPP type model) to unpaired spin density near the
edges.

But granted such an overall computational scheme for the
recognition of edge-localized spin density, the question arises
as to whether there might be any agreement with our simplified
resonance theoretic predictions. Indeed, the net amount of such
unpaired spin density along the different edges for the cases of
Figures 2a and 3a,b and some other cases is found to be the
same as predicted via the simple resonance theoretic argument.
In fact, the density tends to be concentrated on just the same
sites as predicted via the simple resonance theoretic argument.
[After inclusion of the electron-electron interaction’s effect in
a UHF solution, the band gap is generally modified, as
emphasized by Tyutyulkov et al,19 and this is not considered
here; the present point concerns its role in affecting the unpairing
of spins.] In fact, some of the details noted for the polypolyacene
case carry over to other cases, with some of the results best
enunciated in terms of the edge symmetry classification idea
involving the (x,y) labeling explained near eq 3.1. Generally, it
seems that theε vs k band diagram may be partitioned into two
regions corresponding to whether there can occur edge-localized
orbitals. And for edge symmetries (x,y) ) (1,0), these two
regions are just as enunciated for the polypolyacene case of
Figure 10, where the region without edge localization is shaded.
That is, for (x,y) ) (1,0) it may be demonstrated as indicated
in Appendix D that all edge nonlocalized orbitals are confined
(for semi-infinite graphite) in the shaded region, which may be
given analytically as bound by

And any edge-localized orbitals that might occur would only
arise in the unshaded region near theε ) 0 Fermi level. Then
for the limit of very wide strips any nonbonding bands
penetrating into this unshaded region would cover sections of
1/3 or 2/3 (or all) of the full range ofk-values, and just as for the
resonance theoretic case, the consequent net number of unpaired

Figure 10. Overall pattern of band structure for arbitrary width strips
with acenic (zigzag) edges. The bulk bands occupy the shaded region,
and the exceptional edge-localized bands penetrate into the regions-π
e k < -2π/3 and 2π/3 < k e π, with the displayed bands being for
the strips of widthsw ) 1, 2, 3, and 4.

Figure 11. Frontier orbital densities as a function of distance from
the edge of a widthw ) 20 graphitic strip with acenic edges. The
probability|cn|2 represents (in the notation of Appendix C) the quantity
|(na|ε)|2 + |(nb|ε)|2 associated with a transfer matrix “propagation cell”
(which in the absence of the edge would devolve into a unit cell of
graphite).

ε ) ({2 cos(k/2) ( 1}â (5.1)
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edge-localized electrons per unit cell would be an integer
multiple of 1/3. For x g 2 andy ) 0 what apparently happens
is that again there are two similar regions, with the shaded edge-
nonlocalized region obtained from the correspondingx ) 1
shaded region by first folding the plot so that all of the plot is
precisely confined to a wave vector range with|k| e π/x and,
second, rescalingk by a factor ofx so that the wave vector
range becomes-π e k e +π. Thus, forx ) 2, folds are made
at k ) (π/2 and then thek-values doubled, where for the (x,y)
) (2,0) edge symmetry of Figure 4h a band diagram plot of
Figure 12 results. There the bands penetrating into the edge-
localized regions in the first, second, third, and fourth quadrants
are for strips of widthsw ) 1, 3, 5, and 7, with the
edge-localized bands converging more closely toε ) 0 as the
width increases. Here, part of the shaded region is shown as
singly shaded and part as doubly shaded, in correspondence with
how the singly shaded regions ofx ) 1 fold over one another
in the construction for the shaded region for thex ) 2 case. In
the doubly shaded region one can anticipate that on the average
the density of states is twice that as in the singly shaded regions
(because the folding of the band diagram is just a means for
enlarging the unit cell while correspondingly diminishing the
Brillouin zone, though the bulk orbitals being dominated by
the interior is not really changed, since the rationale for the
enlargement of the unit cell is only manifest near the edges). In
Figure 12 there are additional bands neark ) 0 penetrating
outside the shaded region though they are not so nearε ) 0; as
w increases, these bands remain well away fromε ) 0 in the
nonshadow region, and upon examination they are found to be
edge-localized. But these additional edge-localized orbitals being
bonding should (for the neutral hydrocarbons) be doubly
occupied in UHF wave functions and so do not contribute to
unpaired spin density. Related types of plots are shown in Figure
13 for the (x,y) ) (2,0) edges of Figure 4k,l, as occur on strips
of large widths (w ) 20); here, all the eigenvalues (for positive
k) are shown at a selection of 25 equally spacedk-values from
k ) 0 to k ) π, where now the densities of the bands in the
earlier shaded regions can be directly perceived. But also shown
in Figure 13 is a similar plot for a widthw ) 23 strip with
(x,y) ) (2,1) edges of the type in Figure 4m and also for a
width w ) 25 strip with (x,y) ) (1,1) edges of Figure 4e. In all
these cases for fairly wide strips the edge-localized orbitals have

energies very close to nonbonding energies atε ) 0 and are
clearly manifested in these plots. Finally, in a general vein (for
general (x,y) symmetry) the shadow regions always touch the
nonbondingε ) 0 position atk ) (π/3 or k ) (2π/3 if x -
y is not divisible by 3, and atk ) 0 otherwise, all is consistent
with our band theoretic picture supporting the symmetry-
integrality condition for unpaired electrons derived in the
resonance theoretic picture. Incidentally, the number of unpaired
electrons per unit cell of edge is then an integer multiple of 3.
These general results are argued in Appendix E. Overall support
for the simple resonance theoretic predictions is obtained.

Particularly, Fujita and co-workers12-14 have made band
theoretic computations on a number of different width strips
with different edges of a few particular types. Their edge types
included the zigzag (x,y) ) (1,0) edge as in Figure 3a, the arm-
chair (x,y) ) (1,1) edge as in Figure 2a, and a few mixed zigzag/
arm-chair edges as in Figure 4l,w. Generally, they found that
for the investigated strips of increasing widths, edge-localized
band orbitals are in correspondence with the expectations
outlined in the two preceding paragraphs. For a finite-width strip
any such edge-localized orbitals from just above and below the
Fermi level should then pair to give a UHF solution with even
greater localization and less electron repulsion. They emphasized
the edge-nonlocalizing behavior of the arm-chair edge structure,
as contrasted with the edge-localizing behavior of the zigzag
edge structure, and described it as “remarkable” that in the mixed
zigzag/arm-chair case the zigzag structures engendered localiza-
tion despite the presence of the delocalizing arm-chair structures.
But all this is fairly easy to understand from the resonance
theoretic considerations, which, for the type of mixed case (x,1)
that they considered, readily lead to a prediction of (x - 1)/3
unpaired electrons per unit cell of edge. In the last column of
Table 1 these and other band theoretic computations for various
edges are identified by reference. Band theoretic work in the
current article is designated by either “here” when there are
explicit computations or by a parenthetic “(here)” when there
are more complete analytic treatments fory ) 0 (as in
Appendices C and D along with the discussion concerning
Brillouin zone folding). It is emphasized that all these band
theoretic results, both particular and general, are in agreement
with the simple resonance theoretic predictions for the limit of
very wide strips. There are some other band theoretic computa-
tions41 on polyacenic strips of general widths, but the results
have not focused on analyzing the band orbitals to test for edge-
localization discussed here, though as we emphasize, this is very
important in characterizing their (reactivity and magnetic)
properties.

There is further support for the simple resonance theoretic
predictions in Stein and Brown’s computations17,18on large finite
fragments (of up to 2300π-centers). They treat sequences of
increasingly larger hexagonal symmetry fragments with different
types of edges as in Figures 2a,b and 3a,c, and they find frontier
orbitals with densities concentrated along the edges precisely
in the cases (namely, those of Figure 3a,c) where the resonance
theoretic argument predicts locally unpaired spin density.
Moreover, their edge-localized orbitals are evidently those with
energies most nearε ) 0, and they approachε ) 0 much more
rapidly than the cases without edge localization. Further, most
of the density of the edge-localized fronteir orbitals seem to
generally appear in the same atomic locations as indicated from
the resonance theoretic arguments. They do not seem to have
checked how many other orbitals beyond the frontier orbitals
might be edge-localized, and perhaps accurate estimates would
be confounded by the finite sizes of their fragments. Presumably,

Figure 12. Overall pattern of band structure for arbitrary width strips
with edges alternating between acenic (zigzag) and quinoidal structures,
as in Figure 4h. The bulk bands occupy the shaded regions in the large-
width limit, and the exceptional edge-localized bands penetrate into
the regions-π e k < -2π/3 and 2π/3 < k e π, with the displayed
bands being for the strips of widthsw ) 1, 3, 5, and 7.
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a UHF treatment from these orbitals would similarly yield
unpaired spin density in the proper amounts along the edges,
though this does not seem to have been carried out to the extent
already done for the polymer strips of the preceding paragraph.
The cases they have treated are also indicated in the last column
of Table 1 with reference numbers enclosed in parentheses.
Again, all that they do report is consistent with the simple
resonance theoretic picture. Several other finite fragment
computations by other researchers do not seem to have been
analyzed for edge localization. But some42 have concerned
themselves with the rate at which the overallπ-electron energy
of increasingly larger clusters approach that of graphite, finding
that precisely those that we identify as having edge-localized
states show the slowest convergence (as we see should occur

because it is precisely these structures that lead to an extra
density of near-nonbonding occupied orbitals).

Further, there is some relevant theoretical evidence from early
work by Dewar and Longuet-Higgins.43 Their general results
are neatly explained in terms of thePauling freeValence, which
for a sitei of a benzenoid G we define as the fraction of global
Kekule structures that leave sitei unpaired. Basically, for
monoradical benzenoids Dewar and Longuet-Higgins establish
a quantitative correspondence between such Pauling bond orders
and Hückel MO orbital amplitudes for the nonbonding orbital.
But these Pauling free valences are just a bit more sophisticated
type of bond order than the implicit bond orders we have used,
so this is further support for the general correspondence between
MO and resonance theoretic results.

As a result of the various computations and the various partial
proofs we have now noted, it is natural to speculate the
following.

For the correspondence conjecture, let G be a semi-infinite
bipartite graphitic carbonπ-network with a translationally
symmetric edge without any 4n rings. Then for the Hu¨ckel
model of G, there are nonbonding edge-localized band orbitals
whose number matches that of the unpaired electrons predicted
from the simple resonance theoretic argument.

Indeed, there are even further natural speculations: about the
exponential degree of edge localization, about the locations of
the exceptional orbitals in the band diagram (outside the densely
populated shaded region), about modifications appropriate for
a finite-width strip, about the associated form of UHF solutions,
and about the tendency for the locations of the associated
unpaired spin density.

Finally, a few words may be said concerning the extension
beyond simple Hu¨ckel MO theory. The extension to include
electron-electron repulsion and associated exchange interaction
is of course implicit in the consideration of UHF theory for
Hubbard-PPP extended Hu¨ckel models, which we have already
found is a necessary step in understanding the origin of unpaired
electrons within the MO picture. But there are further ap-
proximations, say as concerns the restriction of electron-hopping
integrals (âij) to constant values for nearest-neighbor sites only
or as concerns the neglect of intersite overlap. Clearly, in the

Figure 13. Band eigenspectra displayed at a selection of 25k-values uniformly spaced fromk ) 0 to k ) π. The structures for the four cases
shown are (a)w ) 20 with edges as in Figure 4k, (b)w ) 20 as in Figure 4l, (c)w ) 23 as in Figure 4m, and (d)w ) 25 as in Figure 4e. In parts
a and b the boundaries of the described “shaded regions” are drawn in.

TABLE 1: Edge Symmetries and Edge-Localized Unpaired
Electrons per Unit Cell of Edge

structure in
Figure 4

primitive
translation (x,y)

unpaired
electrons #u

band (or MO)
theory refs

a (1,0) 1/3 12, 13, (17, 18,
20), here

b (1,0) 2/3 16, (here)
c (1,0) 1/3 (here)
d (1,1) 0 (17, 18), 15, 12,

13
e (1,1) 1 here
f (1,1) 0
g (1,1) 0
h (2,0) 1/3 here
i (2,0) 2/3 (here)
j (2,0) 2/3 (here)
k (2,0) 1/3 (17, 18), here
l (2,0) 2/3 here
m (2,1) 1/3 14, here
n (2,1) 2/3
o (2,1) 2/3
p (2,1) 4/3
q (2,1) 2/3
r (2,2) 0
s (2,2) 1
t (3,0) 0 (here)
u (3,0) 0 (18), (here)
v (3,0) 0 (here)
w (3,1) 2/3 14
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interior of a wide strip the bond lengths should retain their bulk-
favored uniform bond lengths, where the shadow regions for
the bulk orbitals should remain the same. Near the edges
different π-bond orders may of course be different, thereby
giving different bond lengths, which in turn enhanceπ-bond
localization and the validity of the classically interpretable VB
theoretic picture. Another type of modification would be in terms
of an “extended Hu¨ckel” model with intersite overlaps and
nonneighbor electron-hopping integrals, and this is considered
in Appendix E where we find that much of the simple Hu¨ckel
based argument is only slightly altered.

6. Conclusion and Prospects

Simple structural rules governing the occurrence of free
valences (or of locally unpaired spins) on graphitic edges have
been developed. These rules are somewhat intuitively derived
(from chemically appealing resonance theoretic ideas) in section
2, and the rules are enunciated in section 3 in conjunction with
Figures 1-3. Numerous particular predictions are made in Table
1 (along with the associated Figure 4) in section 3, and some
general predictions are made in a theorem. It is noted that the
rules find general support: first, from the initially noted simple
(yet presumably correct) resonance theoretic arguments (of
section 2); second, from more elaborated resonance theoretic
VB arguments (of section 4); third, in studied cases (especially
with translationally symmetric edges) from MO or band theoretic
arguments (as in section 5).

The commonality of MO and VB theoretic predictions for
the same structures indicates a robustness for these particular
predictions because of the quite different presumptions going
into the MO and VB models. Thus, apparently the rules and
particular predictions (given in section 3) seem to hold
exceptional promise for guidance as to the character of different
possible edges conceivable for graphitic fragments. Presumably,
the edges with higher concentrations of edge-localized unpaired
electrons would be reactive (as polyradicals) and under many
preparatory conditions undergo additional reactions to quench
this free valence. Notably because of the “symmetry-integral-
ity” theorem of section 3, if an edge of translationally symmetry
(x,y) is such thatx - y is not divisible by 3, then such reactions
at the edge, to decorate it with a nonradical structure, would
take place in such a way that the translational period is tripled
(so that the newx andy being triples of the old would havex
- y divisable by 3). The ideas here incidently rationalize a
number of earlier particular observations,12-14,17-20,31-33,41,42

which were deemed unusual at the time but are evidently due
to our (readily predicted) correlations between edge structure
and edge-localized orbitals.

In addition to the influence of edge-localized orbital on
chemical reactivity and magnetic properties, one might generally
inquire about influences on electrical conductivity. But in this
case elaborate (e.g., ab initio) computations seem to be required.
Though at the Hu¨ckel level the edge-localized orbitals are
precisely at the crucial Fermi level, we have emphasized that
they split apart in a UHF solution of a Hubbard-PPP model.
But the considerations are not complete because the bulk orbitals
have low density atε ) 0, and in fact, also the gap evidently
opens slightly44 for multilayer graphite. But also in extended
Hückel theory one may expect the edge-localized orbitals to
lower slightly in energy (as discussed in Appendix F) so that
the upward split edge-localized orbitals may conceivably end
up being quite close to the Fermi level and thereby affect the
conductivity. Here, the delicacy of the effects makes an ab initio
treatment desirable.

It might be noted that some aspects of our resonance theoretic
arguments carry much beyond the current focus on translation-
ally symmetric graphite edges. Some ideas should carry over
quite straightforwardly to deal with graphite with local defects,
either at the edge or internally. But more generally, some of
the ideas of section 3 hold for quite general bipartite conjugated
networks. Even the simple resonance theoretic ideas should be
treated more tentatively for the case of bipartite systems with
four cycles (i.e., they should be viewed as subject to qualification
or modification) because interaction around conjugated 4n
circuits is not stabilizing (as is the essence of Hu¨ckel rule). Still,
there is notable interest in resonance theoretic models for quite
different systems, e.g., those involving the square-planar lattice
for the understanding of high-temperature superconduction45 and
also Pauling’s theory of metals.46 Hopefully, the ideas developed
here might still prove to be useful in other such areas.
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Appendix A: Proof of Symmetry-Integrality Theorem

First, for symmetry class (x,y), consider a special edge as in
Figure 14. For this special case there are no degree 1 sites, so
eq 3.2 reduces to #u ) |#f2 - #O2|/3, and as seen from Figure
14, the degree-2 apex sites along thex-direction are of one type
(chosen asf in the figure) while the degree-2 apex sites along
the y-direction are of the other type (hereO in the figure).
Further noting that the numbers of these two types of sites are
respectivelyx andy, one sees that #u ) (x - y)/3, and the claim
of the theorem is established for this particular type of edge.

Next, it is to be shown that however the unit cell of edge of
a given (x,y) is modified, by adding (or subtracting) new sites
from the special case of Figure 14, it turns out that #u is modified
from the reference value((x - y)/3 by an integer, so (if this
can be shown) the integerness (or nonintegerness) of #u is
conserved. Consider adding edges one at a time, where two
patterns of connection to already preexisting sites are possible
depending on whether the new site is attached to 1 or 2 of the
earlier sites. Labeling the new site added by * and the site(s) to
which it is attached byO, one obtains the two connection
patterns of Figure 15. For the single attachment case if the * is
starred, then this attachment process adds a (zero-order) spin
density of+2/3 at site * while the (zero-order) spin density at
the attachment siteO is decreased by-1/3 (from -2/3 to -1/3
or else from-1/3 to 0), so the net change in spin density is+1.
If * is instead unstarred, then the net change in spin density is
-1. For the case of Figure 15 the double-attachment process
likewise yields a net change in spin density of(1. Thus, for

Figure 14. Special type of reference (x,y) edge.
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each modification adding a single site, the integerness is
conserved. And yet, it must be conserved on subtraction of sites
(since starting with the site depleted, edge addition of sites
conserves integerness). Thus, the theorem is proved.

Appendix B: Proof of the Pairing-Conservation
Theorem

To establish the pairing conservation theorem of section 4,
we presume a cutC to which are associatedCf andCO. For a
given Kekule structureK there is a value∆(C,K) for the
difference between the number of edges ofK in Cf andCO,
and we letSf(C,K) andSO(C,K) denote the respective numbers
of starred and unstarred sites on the A-side ofC such that all
the sites of theseSf(C,K) are bonded to other sites in A. Of
course, some of the sites in A may be bonded to sites on the
other side B, and the numbers of such starred and unstarred
sites evidently are|K∩Cf| and|K∩CO|. Thus, the total numbers
#f(C) and #O(C) of starred and unstarred sites on the A-side of
the cutC may be decomposed as

Then from this and the fact that forK the numbers of starred
and unstarred sites bonded within A must be equal (for a
bipartite graph), it follows that

Since the left-hand side of this equation is independent ofK,
so must be the right-hand side, and the proof is complete.

Appendix C: Edge Localization, Asymptotic Degeneracy,
and Nonbondedness

First, for semi-infinite graphite, let us suppose an energyε

edge-localized eigenorbitalψ, with amplitudes decaying rapidly
into the interior. Identify a sequence of bonds at a given large
distanced from the edge such that this sequence exhibits the
same translational symmetry as the edge. Then presuming that
these bonds when cut end up disconnecting the edge from the
interior at distances greater thand, imagine a reflected duplicate
of this strip and form a strip of width 2d by joining these two
halves together. Since the considered orbitalψ has decayed to
a very small amplitude at the (large) distanced, one can expect
symmetric and antisymmetric combinationsψ + σψ ≡ ψ+ and
ψ - σψ ≡ ψ- to be (essentially) the eigenorbitals of the strip.

Evidently, these new eigenorbitals are energetically split but
very slightly fromε, and this splitting will rapidly approach 0
as the width is increased. These asymptotically degenerate
orbitals then make the orbitalsψ andσψ that are localized on
opposite edges good candidates for UHF eigenorbitals if the
splitting makesψ+ andψ- bonding and antibonding. Further,
the strip construction implies that the reflectionσ interchanges
starred and unstarred sites. Then inσψ andψ as well as inψ+
andψ- the roles of starred and unstarred sites are interchanged.
Hence, oftenψ+ andψ- are just the paired orbitals of Coulson
and Rushbrooke,23 where they have energies oppositely dis-
placed from 0. In such a case with asymptotic degeneracy, they
are both close toε ) 0 and asymptotically nonbonding.

One may conversely presume a length of band of essentially
nonbonding eigenorbitals. Though the band gap (or HOMO-
LUMO) for graphite is 0, it is known that the bulk density of
states drops to 0 at this energy. Thus, the orbitals corresponding
to such a band portion should generally not be bulk orbitals,
where they are edge-localized.

Appendix D: Band Characteristics for (x,y) ) (1,0)
Edges

It is wished to establish the band diagram locations of edge-
nonlocalized and edge-localized band orbitals when the edges
are associated with a symmetry with (x,y) ) (1,0). In this case
the unit cell is just one hexagon in width and may be chosen to
be of the shape indicated in Figure 16a. Then the Hu¨ckel
eigenvalue problem ink-space takes (see, for example, ref 47)
the form of a graph theoretic adjacency matrix eigenvalue
problem with a weighted adjacency matrix for a weighted graph
as indicated in Figure 16b, where the solid edges are of weights
â and the dashed edges are of weightsâ e(ik, with the+ or -
sign applied here as the element corresponds or anticorresponds
to the edge direction. Evidently, this matrix appears much like
that for a linear chainlike problem, with a period of repetition
every two sites, so that the sites might be numbered as indicated
in Figure 16b. Then letting|ε) denote the Hu¨ckel eigenvector
with a p,cth component (p,c|ε), the eigenequation may be
expressed in the form

whereâ( ≡ â(1 + e(ik) and the integer indexp is large enough
to represent a position away from the edge. Following a general
“transfer matrix” technique that has proved to be useful for
open chains48 and with boundary states,49,50 eq D.1 can be
rewritten as

Figure 15. Processes for single and double attachments of one new
site O to one or two preexisting sites labeled* .

Figure 16. Unit cell for (x,y) ) (1,0) is shown in part a, and in part
b for the solution of the Hu¨ckel model there appears the associated
quasi-one-dimensional graph (withk-dependent weights e(ikx on the
directed edges).

#f(C) ) |Sf(C,K)| + |K∩Cf| and

#O(C) ) |SO(C,K)| + |K∩CO|

#f(C) - #O(C) ) {|Sf(C,K)| + |K∩Cf|} - {|SO(C,K)| +
|K∩CO|} ) (∆(C,K)

â+(p,b|ε) + â(p+1,b|ε) ) ε(p,a|ε)

â(p,a|ε) + â-(p+1,b|ε) ) ε(p,b|ε) (D.1)
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Or if the left-hand-side matrix is inverted, then it appears as

Here, there appears on the right-hand-side a 2× 2 transfer
matrixT, which carries the eigenfunction amplitudes at position
p to the eigenfunction amplitudes at positionp + 1. And
evidently, these amplitudes will propagate without diminution
or growth (i.e., lead to a bulk smeared out orbital) if and only
if the eigenvalues toT are of unit magnitude. Now these
eigenvalues toT are

where abbreviationsε ≡ ε/|â| and c ≡ 2 cos(k/2) have been
used. Now if the discriminant is negative, then

so the associated orbital has components that penetrate without
diminution of magnitude into the interior. Thus, the condition
for edge nonlocalization of an orbital is that the discriminant
in eqs D.4 and D.5 be nonpositive:

Or with factorization and a focus on strict inequality, this
becomes

(where the special case of equality leads to Bizco’s “intermedi-
ate” orbitals50). Then to satisfy eq D.7, either one or three of
the factors on the left-hand side of this equation are to be
negative, and it follows that the nonlocalized band orbitals have
energies confined to the shaded areas of Figure 12, with the
shaded areas having boundaries given by eq 5.1.

Appendix E: k-Space Location of Nonbonding Shadow
Region

The shadow region is determined by the delocalized or bulk
orbitals, which are on the whole like those in extended graphite.
Thus, the shadow region in the Brillouin zone should be
determined from the solutions for extended graphite, for which
there are two independent translational symmetries, which we
take to be in thex- and y-directions identified in the charac-
terization of edge symmetries, near eq 3.1. Then the graphitic
Hückel model reduces to the solution of a 2× 2 matrix with
wave-vector-dependent elements. This matrix can be viewed
as equivalent to that for the adjacency matrix for a weighted
graph, as in Figure 17, with thex- andy-directed edges with
weightsâ e(ikx andâ e(iky. Therefore, this matrix has diagonal
elements of 0 and one off-diagonal elementâ{1 + eikx + eiky},
while the other is the complex conjugate of this. Thus, the orbital
eigenvalues for extended graphite are

For edges of symmetry (x,y) the basic translation defining
the edge-attentive unit cells involvesx steps in thex-direction
and y steps in they-direction, so the wave vector associated
with such a translation is

and the bulk graphitic energies expressed in terms of this are

The shadow region then is at a givenk by the envelope of this
function asky varies between-π and+π. And of special interest
is where the shadow region touches the (nonbonding) Fermi
level atε ) 0. From eq E.1 it is evident that the graphitic bands
touchε ) 0 only at two wave vector values, namely, (kx,ky) )
((2π/3,-2π/3), which then corresponds to a edge-attentive
wave vector of

which of course we take modulo 2π (to fit it into the first
Brillouin zone). That is, there are just three manners in which
the shadow region touchesε ) 0, namely, at

Further, because from Appendix C the edge-localized orbitals
must, for the Hu¨ckel model for semi-infinite graphite, be
nonbonding, any edge-localized band would proceed (atε ) 0)
between thek locations of eq E.5 allowed for the particular
(x,y) involved. That is, for example, for the last case of eq E.5,
any edge-localized band would cover thek-space regions either
with 2π/3 < |k| < 2π or with 0< |k| < 2π/3. Thus, the number
of unpaired (edge-localized) electrons per edge-attentive unit
cell is necessarily a multiple of1/3, and if x - y is divisible by
3, it must be an integer.

Appendix F: Extended Hu1ckel Theory

The simplest version of extended Hu¨ckel theory51 entails
inclusion of overlapss to nearest neighbors and of next-neighbor
electron-hopping integralsâ′. Let A be the (nearest-neighbor)
adjacency matrix so that the ordinary Hu¨ckel matrix isH ) RI
+ âA, though often one takesR ) 0, since this only shifts the
one-electron eigenspectrum (though retaining a nonzero value
would be important in dealing with ionization energies).
Similarly, let A′ denote the matrix of next-nearest-neighbor
“adjacencies” so that the slightly extended Hu¨ckel model we
consider has Hamiltonian and overlap matrices

One may verify that if we let∆ denote the diagonal matrix of
site degrees, then

Figure 17. Band theory graph for the graphite unit cell.

k ≡ xkx + yky (E.2)

ε ) (â|1 + exp[i(k - yky)/x] + exp(iky)| (E.3)

k ) (2π(x - y)/3 (E.4)

k ) 0, if x - y is an integer multiple of 3

k ) (π/3,
if |x - y| is 1 more than an integer multiple of 3

k ) (2π/3,
if |x - y| is 1 less than an integer multiple of 3 (E.5)

H′ ) RS + âA + â′ A′ and S ) I + sA (F.1)

[-ε â+

â 0 ]((p,a|ε)
(p,b|ε) )) (0 -â

-â- ε )((p+1,a|ε)
(p+1,b|ε) ) (D.2)

((p+1,a|ε)
(p+1,b|ε) )) 1

ââ-
(ε2 - â2 -εâ+

εâ- -â-â+
)((p,a|ε)

(p,b|ε) ) (D.3)

x( ) (2c)-1{ε
2 - 1 - c2 (

[(ε2 - 1 - c2)2 - 4c2]1/2} eik/2 (D.4)

|x(| ) (2c)-1{(ε2 - 1 - c2)2 +

[4c2 - (ε2 - 1 - c2)2]}1/2 ) 1 (D.5)

(ε2 - 1 - c2)2 - 4c2 e 0 (D.6)

(ε - 1 - c)(ε + 1 + c)(ε - 1 + c)(ε + 1 - c) < 0 (D.7)

ε ) (â|1 + eikx + eiky| (E.1)
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But except for the edges,∆ is the same as 3I , so for bulk
properties 3I - ∆ is a negligible perturbation. That is, for bulk
properties (i.e., properties independent of details of the edge) a
very close approximation results if we use

ThenA, H, H0, andS all have common eigenvectors, and ifλ
denotes an eigenvalue ofA, the corresponding eigenvalue for
the generalized eigenvalue associated withH0 andS is

Or when the eigenspectrum is shifted so thatR ) 3â′, then

where one sees that for sufficiently (and typically) smalls and
â′ the orbitals (and their energies) retain their identity as
bonding, nonbonding, and antibonding. That is, so far as the
bulk orbital energies are concerned, there is just aε-dependent
rescaling, and in particular, the shaded regions of our band
diagrams appear “essentially” as before, being distorted in shape
but touching the nonbondingε ) 0 Fermi level at precisely the
samek values. The exceptional bands that penetrate out of the
shaded regions of the band diagram involve edge localization
so that the edge-localized perturbationâ′(3I - ∆) might be
considered. Indeed, this perturbation is an attraction to the edge
regions, so it only enhances the edge localization and diminishes
the subsequent Hu¨ckel gap between their symmetric and
antisymmetric forms. Therefore, the cost for their UHF mixing
is again negligible, so the UHF solution still applies and gives
rise to the same amount of unpaired spin density localized near
the edges.
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(50) Bizcó, G. Ned. Tijdschr. Vacuumtech. 1978, 16, 195. Bizcó, G.;
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