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Graphitic Edges and Unpaired z-Electron Spins
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The effects of different types of boundaries on graphite fragments are considered as they influence the
m-electrons. From a simple resonance theoretic argument there are proposed simple structural conditions
governing the occurrence of “unpaired-electron density near the edges. Predictions based on these rules
are made for a variety of edge structures. Further, the novel resonance theoretic argument and predictions are
strengthened through more elaborate considerations of both the valence bond and molecular orbital theoretic
nature, especially for translationally symmetric polymer strips with various types of edges.

1. Introduction graphite. These simple rules of section 3 may be applied without
reference to any other sections concerning their theoretical
justification.

The simple resonance theoretic based picture is elaborated
in more theoretical detail in sections 4 (from a VB viewpoint)
ﬁnd 5 (from an MO viewpoint). Basically, with closer attention

Graphite and the behavior of theeelectrons therein has long
been of interest. Most of the theoretical work has focused on
the bulk properties. Within the simple’ldkel molecular orbital
(MO) framework, solutions? for the m-electron bands of
extended systems go back about 5 decades, with hundreds o ) i !
more recent articles. On the other hand more successful® _Kekule structyres, sectlon.4 prowdes_deeper VB thgoretlc
quantitative work within a resonating valence bond (VB) evidence, following some earlier woPkhat is, a more detailed

framework for such extended systems is more recent, perhapdoundation is pursued for the implicitly averaged effects of
starting a decade baékbut now with very much work as Kekule structures utilized in the picture of section 2. But the

reviewed in ref 4. And the whole area of conjugatedetworks VB theoretic approach contrasts with the conventional quantum
is of continuing intense interest, especially with the advent of chemical approach for the treatment of molecular structures,

fullerenes and “buckytubes”, and the possibilities related including edges or surfaces, such being by way of MO or band
nanostructural devices. theory. For example, in reviews 10 and 11 concerning the
electronic structure at surfaces or in the particular cases studied

Real graphite has boundaries or edges, and often markedly. fs 1214 on the ch terizati f the electronic struct
s0, in the sense that most graphite is rather impure, consistingIn rets on the characterization ot Ihe electronic structure

of smaller pieces or having rather many imperfections that may of graphitic edges,_ there is no mention of resonance theory or
often be viewed to introduce an additional (internal) boundary VB theory. Now with such alternative MO theoretic schemes,
edge. Experimentally occurring graphites seem typically to be systems are usually treated_ on a ca_se-by-case computational
ill-characterized in terms of the nature of the edges or of the manner so that rules emerging from It woulgl be more or ess
imperfections and instead often seem to be charactérized ~ €mPirical, with the MO computations playing the part of

terms of a few bulk properties and methods of preparation. Thus,(computer) e>.<perime.nts. Section 5 (.:ons"iders some theqretical
theoretical work on the effect of different graphitic boundary and computational evidence from a simpléckel MO theoretic

structures on the behavior of theelectrons may be especially ~ ramework, with these arguments being brought to a reasonable
valuable, particularly if simple rules can be discerned. Further, conclusion only through the inclusion of electreglectron

such work should also be of much use for the characterization INtéractions, most simply using an unrestricted Hartféeck
of carbon nanostructurés. solution to a HubbardPPP model. Such computed MO band

. 16 : ; :
Here, simple rules concerning the effect of different types of theoretic resul&=16 turn out in the cases so far investigated to

edge structures on theelectrons are sought. As so thoroughly be in close agreement with the simple resonance theoretic

illustrated by Paulind,resonance theory offers a ready method plctgre, and there is a degigee of agreement \.N'th some other
to qualitatively treat many molecular species, and in the particular MO computatior$ 19 on large benzenoids. A number
approach to be taken in section 2 here, a modified,simple versionOf band theoretical results consistent with the resonance theoretic

of this resonance theoretic view is used. From this approach aPiCt“Fe are also establishe_d in_a genera_l manner in which the
simple method emerges to correlate molecular and electronicunpa'red electrons appear in this alternative approach emerging

structure at graphitic edges. The resultant rules stated in sectioff@nd eXp'a'“'”Q a number of earllgr special case observations).
3 are quite simple, though they do not seem to have previouslyovera”’ the_ simple rules of section 3 seem to be generally
been so fully articulated. The application of the rules to a number SUPPorted via both VB and MO theoretic evidence.

of particular cases is illustrated, and they are also noted to make Throughout the present considerations th@etwork is
some rather general predictions concerning unpaired spinconsidered only insofar as providing a frame in which the

densities for different translationally symmetric edges on 7-€lectrons are to move. Of course, with edges there are
o-electrons on the edge also and if allowed to “dangle” could

On leave of absence from Institute of Theoretical Physics and CONceivably contribute to a reconstruction of the edge to a
Astronomy, Gostauto 12, 2600 Vilnius, Lithuania. “nonclassical” structure. Here, it is imagined that no such
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reconstruction occurs so that the structure of the network up to
the edge is just a subsection of an infinite graphite sheet. That
is, the structures presently presumed are to be just that of
subsections of the honeycomb lattice. One might imagine the
o-electrons from the carbons at the edges to be bonded to some
terminating atoms such as H atoms. If bonded to O atoms or
OH groups, there are of course additiomaélectrons to take

into account, but this is to be left for future consideration, though

it is surmised that similar ideas can apply. Indeed, resonance
theoretic ideas should presumably be of interest in a more
general materials science context, for though Pauling’s work
in a qualitative mode on finite molecules seems well accepted
in some quarters, comparatively less use seems to be accepted
as successful in treating extended solid-state or polymeric
systems.

Figure 1. Different possible local types of graphitic boundary
structures, along with any presumed (zero-oraeopnd orders differing

. from Y3 and residual (zero-order) free valences, which are encircled.
2. Resonance Theory for Graphitic Edges

associated sites. Thus, it is seen that different types of edge

Conventional qualitative resonance thedt$P2lis based on ;
structures lead to different amounts of free valence at the

the consideration of sets of different classical chemical bonding
patterns consistent with the given structure. Further, the greatered9€s: _ .
the number of such low-energy VB patterns the greater the A further refinement concerns the range of any pairing
stabilization (because of configuration interaction among them). Petween nonneighbor sites. If the distance between two non-
And of course an individual VB bonding pattern is lower in neighbor sites is smaller, then such a pattern being more similar
energy the greater the number of neighboring singlet spin-paired© & Preferred neighbor-pairing pattern is more stabilizing than
bonds there are. Thus, there are two tendencies competing td Pattern with free valences, which are necessarily very distant.
maximize overall energetic stability: maximization of the Butin the.|mple.mentat|on of theselldeasz itis important to note
number of neighbor-paired sites and maximization of the number the following: first, that the graphite lattice ipartite in the
of resonance structures. Thus, since the edge is such a smaff€nse thét it can be divided into two subsets (usually called
fraction of the bulk (if the graphitic fragments are large), one Starredandunstarred such that any site from one subset has
might allow nonneighbor-paired sites confined to the region of It neighbors solely in the other subset; and second, that the
the edges if this circumstance notably enhances the number ofSinglet spin pairing & preferred solely between sites in different
VB bonding patterns. That is, resonance stabilization inNhe ~ SUPSets. Free valences on a boundary can then be (partly) satiated
atom bulk might overcome the loss of these relatively fet2 by nearby free_ valences only if they are.located on different
unpairedz-electrons near the edge. [At least for “ordinary” types of sites (i.e., starred vs unstarred .S|tes)..That is, the free
shaped fragments, the boundary should hadé’2 atoms.] va_tler:ce”s on the st_arred ar_ld unst_a_rred sites _mlgh_t_be identified
Thus, the argument devolves to the consideration of classesW'th +" and " 5|gn(_adsp|n d?”s'“es‘(v_'th Spin pairing only
of VB bonding patterns with satisfaction of the first rule above, between oppositely signed spin densities, with the strength of

indicating that any nonneighbor-paired sites should be confined the pairing diminishing with separation. Thus, for the different

to the edge region. Then in consequence of the second rule_k'nds of regular (i.e., translationally symmetric) edges appearing

above, such classes having the greatest numbers of member¥ Figure 2, there is pai_ring between either nearest neighbors
are sought. But in fact the characterization of the class with the or n(ixt-next-rlearest ptlellgt[lr?otrs sg.that tgesiidggs a;e nt?]t S0
most numerous Kekule bonding patterns is somewhat intuitively reactive, most especially that In Figure a. LIKEWISE, for the

clear; resonance should be greatest when the bonding patterngifferent types of regular edges in Figure 3 there is pairing

are as delocalized as possible. That is, one might anticipate (ano?hostsi'r?le ong/ to sgme distant S|t35d,.s?y ;)n an opptc_)sr[e eéjge,h%c.)t
correctly so, as elaborated in the section 4) that in the bulk region at these edges (being presumed distant) are reactive and exhibi

the probability of a double bond along any one of the three essentially unpair(_ed spin density Iocalize_d alpng the edges of
directions away from a site to its nearest neighbors is equally tEe fragdment; thalt 1S, thﬁse edges pmdyradma:]md Moreov;ar,d

likely. This probability is essentially a bond order as often these ideas apply to characterize many other types of edges.
defined? in treating benzenoids; tHeauling bond orderfor a And the overall argument may be expressed as a simple set of

given bond of a conjugated hydrocarbon is just the fraction of ™U1€S Presented (and applied in the next section).
the (fully paired) Kekule structures for which the given bond
is double. Thus, the preferred classes of VB bonding patterns
for large graphitic fragments should be those such that the
s-bond orders are very close 4 in the bulk of the fragment. The discussion of the preceding section leads to simple rules
But now there are notable consequences iftimnd orders for edge-localized spin density. For the special case of trans-
are close td/s in the bulk and if any deficit of the sum of the lationally symmetric edges there are especially simple purely
bond orders at any site near the edge represents nonneighborstructural rules, where details of the underlying resonance
paired electron density. This deficit might be termegsidual theoretic picture have been refined away, as in eq 3.2, but first
free valence Thus, near the edge one can identify as in Figure a set of slightly more general rules with attention to the zero-
1 different local arrangements for bond orders if the connections order resonance theoretic picture and with wider applicability
toward the interior have a bond order’d$. Here, edge bonds  are given. From the preceding discussion the following are the
are allowed to have values differing frot if it leads to a simple rules.
more complete saturation of the free valence, remnant nonzero (a) Assignsz-bond orders of/; to each edge issuing from a
values of which are indicated in small circles marking the site of degree 3.

3. Local Unpaired Spin Density: Rules, Application, and
Discussion
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the table that thrice the number of unpaired electrons per unit
cell is always an integer.

(a) The resultant predictions for such translationally symmetric
edges can be given an even simpler purely structural presenta-
tion. Rule d uses the phrase “nearby”, which for the case of
translational symmetry can be given a quite precise formal
meaning in terms of sites within the same unit cell of edge.
Further, for the net spin density, the precise locality of the
unpaired spins does not matter, so one might use just a zero-
order picture with a bond order & (initially) assigned to every
bond, and the corresponding zero-order free valences &g 0,

2/3, or 1 for sites of degred = 3, 2, 1, or 0, though of course

(b) we still need to pay attention to further pairing between opposite
types of sites. The results can be neatly expressed in terms of
the numbers #; and #4 of starred and unstarred sites of degree
d per unit cell, where the numbey, #f unpaired electrons per
unit cell of edge is seen to be predicted to be

2 1 2 1
#, :|{§#*1 + 5#*2} - {5#01 + é#oz} | (3.2)

which is a purely structural condition. There is a further result
(©) that allows one to exclude many symmetry classes of edges
from ever being nonradical, namely, the symmeitntegrality
theorem: Within the simple resonance theoretic picture as
applied to translationally symmetric edges of symmetry class
Figure 2. Portions of different types of translationally symmetric  (xy) the number #of unpaired electrons per unit cell is an
graphitic edges giving rise to no net spin density at the edges. The integer if and only ifx — y is a multiple of 3. A proof is given

zero-order nori; bond orders at the edges are indicated, as also are . A dix A. Stabl dical lati I .
the associated zero-order free valences, which for the cases shown call! APPeNdix A. Stable (nonradical) translationally symmetric

be paired between nonneighbor starred and unstarred sites as indica’te@dgeS can occur only among those of symmetry classgs (
by dotted lines. with x — y divisible by 3.

For the polyradicaloid case the unpaired spin densities are
(b) Assign the remainingr-bond orders to be as large as not necessarily so severely localized as one might surmise from
possible subject to the constraint that the sum ofstHeond such rules (as illustrated in Figure 3). That is, one can imagine
orders of no site exceeds 1. the free valences locally moved around to other nearby atoms,
(c) Calculate zero-order free valencgsit each sité as the say as done in Figure 5. But the free valence on a particular
deficit from 1 of the sum of ther-bond orders. incident at type (starred or unstarred) of site is conserved (as is more or
that site (i.e.pj = 1 — Sevipe ). less empirically evident but which is also shown in section 3),
(d) The unpaired spin density at an edge is the difference and the farther the free valences are moved the greater the region
between the net free valence of starred and unstarred sites nearbwhere there is less maximally resonant bulk material with
on an edge. s-bond orders ot/ in each direction. That is, the net unpaired
Again, a refinement of the last two rules would take more spin densities are not completely localized but tend to stick near
explicit account for pairing between next-next-nearest neighbors the boundary to the same types of sites. But rearranging the
(or perhaps even a little more distant), thereby identifying bond orders and allowing the free valences to be more smeared
generally more accurately the unpaired spin density and its out still gives rise to the same numbers of unpaired electrons
location. near the edge. That is, without even explicit construction of
As these rules stand they are rather simple to apply, which Kekule structures predictions are readily reached as to the extent
we have done for the edges of Figures4&2 The more of unpaired electrons showing up on a given type of graphitic
comprehensive listing of Figure 4 identifies just a unit cell of edge, and some indication is obtained of where it shows up.
edge (where the structures of the more extended representations Of course, sites with higher residual free valences should be
of Figures 2 and 3 are repeated). These unit cells are more reactive. Thatis, if an edge forms with higher free valence
conveniently labeled by the primitive translations along the edge values, then one can anticipate that the edge is reactive,
direction, such a label being a two-digit codey] with x preferably forming, say through addition reactions, new local
identifying the number of hexagon center to neighbor hexagon structures that exhibit less free valence. Therefore, there are
center steps along one direction imagined to be from left to implications as to the types of stabilized edges as could appear
right andy identifying the number of similar steps along a on large graphite fragments. Also, unpaired electrons at the
second direction rotated B@ounterclockwise. It is a matter of  edges should enhance a material’s paramagnetism, which is in
convention to choose fact observed for some graphites, with some graphitic materials
showing exceptional paramagnetism perhaps because of unusual
O0<xzy=0 (3.2) edge structures. Further, there should be implications for regular
conjugated hydrocarbon polymer strips, several simpler types
These associated translation symmetry labels and the consequerf which have received much experimental treatment over the
predicted numbers#bf unpaired electrons per unit cell of edge last couple of decades, notably polyacetyfér@nd polyp-
as pictured in Figure 4 are reported in Table 1. And the last phenylene® Indeed, similar ideas apply to correlating locally
column of the table is discussed in section 5. It is seen from unpaired spin densities at the ends of polymer strips with the
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Figure 3. Portions of different types of translationally symmetric graphitic edges giving rise to nonzero net spin density at the edges. The zero-
order nont/; bond orders at the edges are indicated, as also are the associated zero-order free valences, which here (being on like type sites) remain
unpaired.

type of strip structure and the various end structures, but thisis an associatedut partitioninginto two subsetx and Co,

we do not pursue here, it having already been ééhim the since the A end of a neighbor pair 6fis starred or unstarred.
more elaborated format of section 4. An example of a cuC on pyrene is indicated by the dotted

line in Figure 6; i.e., the bonds intersected by the dotted line
4. Resonating VB Theoretic Refinement are those irC. The associated cut partitioning 6fis C«®Co

={{1,2}e&{{5,6,{11,1G}. Note that the net partitioning of
C is independent; the first of which set of sites are called starred
or unstarred; and second of which the subgraph is taken as A

Notably much of the resonance theoretic argument of the
preceding section can be made a little more complete, following
more traditional resonating VB theoretic lines with a more ) ) .
explicit consideration of “Kekule structures”, such as already ©' B (though what is calle@« andCo might be interchanged).
considered somewhat in ref 8. Oftddekule structuresare A given (global) Kekule structuré may be, thought of as a
viewed?to be VB bonding patterns wherein every site is paired Certain subset of graph edges, some of which may be common
to a unique neighbor. But in order to treat radicaloid systems, [0 & 9iven cuC, and one may define a particular characteristic
this constraint is relaxed for the condition that there be a
maximal pairing of neighbors (where some may be left unpaired A(C,K) = [|(KNC,)l — [((KNC)I| (4.2)
as when there are an excess of starred sites over unstarred sites).

Here, we term maximally paired bonding patteghsbal Kekule That is,A(C,K) can be described as the difference in numbers
structures and utilize even more weakly constraimglét Kekule of 7-bonds ofK identified as neighbor pairs @x and ofCe.
structures, which are to have all sites neighbor-paired exceptA cut C for the case of phenanthrene is in Figure 7, indicated
perhaps some few at the edges. It is the distinction betweenas a dotted line in each of the five (global) Kekule structures.
these global and bulk structures that is crucial in the presentin this case one of the two se@. or Co is empty and the
context. Now one naturally anticipates that Kekule structure difference between their orders i1 (for every Kekule
counts should benultiplicative in the sense that for the case of  structure). Now the Kekule structure invariants of interest may
two disconnected fragments A and B each with cokftsaand be characterized in a theorematic form as the pairing conserva-
Kg the overall count iKag = KaKg, S0 especially for a large  tion theorem: Let G be a bipartite graph with a @uand a cut

N site system G with courg it is appropriate to deal with the  partitioning intoCx andCo. Then every global Kekule structure

Kekule structure count per site defined as of G has the same differenc&(C) in numbers ofz-bonds
identified as neighbor pairs @« and ofCo.
K= K™ (4.1) This theorem, which assert< independence of\(C,K)

= A(C), is proved in the Appendix B. That is, despite the

And whether nonneighbor-paired spins near an edge occur therseeming disorder of-bond arrangement among the different
is a question that involves the consideration of the bulk values global Kekule structures, there is something that is “conserved”,
for «. In particular, it is to be considered howdepends onthe  and conservation principles typically have important conse-
type of edge if all sites are required to be neighbor-paired (as quences.
in a global Kekule structure) and how this deviates from the  The relevance of this cut invariant is illustrated for a polymer
maximum value ok otherwise attainable allowing only a few  strip as in Figure 8 where there is identified a (translationally
unpaired sites near the edge. equivalent) sequence of local c@g. each marking a boundary

That such different bulk values af are possible has to do  of a unit cell. Since each such local cut is (translationally)
with a long-range order that occurs for Kekule structures and equivalent, one might expect that théCi,c) at every boundary
that can be characterized in terms of a “cut” that divides the should be the same, and this indeed is the case, as is illustrated
molecularz-network graph G in two. Acutis a subseC of for two Kekule structures also shown in Figure 8. But the two
neighbor pairs of sites of G such that if the bonds of the site different Kekule structures shown have different valuesXer
pairs of C are deleted from G, then the graph falls into two (Ci,c), as can be consistent with the theorem only in the
disconnected pieces, say A and B. Further, given L¢tiere following certain circumstances: if the Kekule structures are
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Figure 4. Unit cell portions of various possible graphitic edges, with the vertical dashed lines indicating the boundaries of the unit cells. Nonneighbor
pairing between sites unpaired in zero-order is indicated with (nonvertical) dashed lines.

not global and at least one has some unpaired sites at the ends Indeed, in the earlier treatméhtieveloping some aspects of

of the polymer chain; if the two Kekule structures are global, the present theorem, the system (though not necessarily trans-
they occur on two polymer chains differing slightly in their end lationally symmetric) was imagined to be embedded within the
structures; if the polymer has cyclic boundary conditions, where “dough” of a doughnut (i.e., a solid torus) such that linked sites

it takes two of the unit cell boundaries to make a complete cut were spatially close, and a cut was local so as not to disconnect
Ccom consisting of two local cuts so that the two global Kekule the doughnut; all this avoided any discussion of our bulk Kekule
structures end up having the samg.om) (=0 if the two local structures or edges, as made convenient the consideration of
cuts are translationally related). the bulk consequences of the ordering. In any event with the
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form ~cN, then the number of Kekule structures that may be
made from a typical Kekule structure4€2N, since one either
makes or does not make the change in each of ~toi
independent positions. But also the number of Kekule structures
must be bound by-3V2 (where we imagine that each of the
~N/2 starred site has no more than three choices for which the
unstarred site is to be paired to in a Kekule structure). Thus,
the number of Kekule structures for the more highly resonant
Kekule structure classes should scalexBswith « > 1 and
typically with a greater value for the greater the resonance
energy per site. Indeed, this is quantitatively shévas a
function of resonance class for a sequence of strips. Typically,
log « should be roughly proportional to the resonance energy
per site, and in particular, the resonance classes with larger
should be more stable (i.e., have higher resonance energy).
Another crucial consideration in the argument of the preced-
ing section is that pairing is dominated by that between sites of
different types (starred or unstarred), with nearer such pairings
giving rise to greater stabilization and larger exchange-mediated
splittings among states of different spin multiplicities. First, very
distant singlet spin pairings act much the same as triplet pairings
or no pairings. That is, if distant singlet spin pairings in a wave
function are replaced by triplet pairings, there is little effect on
the energy, since the coupling to anything with nearby pairings
. . . ) instead is very weak; either the direct interaction in the
con3|d_erat|on of bulk Kekule structures one can still def!ne a HamiltonianHys is very small or it takes many applications of
local differenceA(Cioc) though now different values are possible, neighbor exchange interactions fityg to bring the pairing to

but structuresK with different values of A(Cioc) differ —  eqrhy sites. Thus, pairings from one side of a wide strip to the
everywhere in the bulk of the material and so must be essentially ipar may be neglected and the spins so involved may be

noninteracting (as Ion_g as i_nteractions are local). Thus,. the bU|keﬁectiver viewed as unpaired. Indeed, for such unpaired spins
Kekule structures fall into differemesonance classessociated on a wide strip, one may expect them to act just as a modified

with different values of A(Cioc). Because of the lack of  gyin would with the far side of the strip having no locally
interaction between bulk Kekule structures of different resonance unpaired spins.

classes, there is a separate ground state associated with each Some aspects of the present argument are identifiable in
such P??(SSI. These different resonance clﬁssesf,t each haV_Tl theérarlier work. A notable part of the present discussion is found
(r)]wn exule str_utilture count per site S?j L at ofen 3”? WL in ref 27, but also some other aspects are found elsewhere
ave (exponentially) more structures and be preferred (in giving it q ¢ recognition of their relevance. For example, ¥&n,
rise to a lower energy, more resonant ground state) even if thlsGordon and Davisof? Elser33 and Stein and Brows with
leads to unpaired electrons at the polymer strip ends. Moreover : ’ '

h iderafi lead rather directl . ) ibili 'different special boundaries find Kekule structure counts per
these considerations lead rather directly to interesting possibili- jte that are smaller than the “proper” bulk value found when
ties for solitonic excitations, as discussed elsewRére.

- ’ i o there are either no boundaries (i.e., cyclic boundary conditions)
A crucial point of consideration in the argument of the a5 in ref 34 or suitable boundaries (as that in Figure2a@pat
preceding section is the manner of dependence of the resonancg refs 17 and 3433 in essence count what we have termed
energy on the number of Kekule structures and in particular on gjopal Kekule structures associated with nonmaximally resonant
«. Given a Kekule structure, its interaction with others (i.e., its resonance classes, whereas the different counts of ref 34 are

resonance) is governed by the number of ways of making a for al| classes (which asymptotically are essentially the maxi-
small local modification to change it to another Kekule structure. mgaly resonant resonance classes).

One such local change is an alternation of the pattern of bonding Finally,
around a conjugated six-circuit (this being a hexagonal ring with gjnce for a molecule it leads to a prediction of the global spin
altt_ernatmg single and double bonds), as illustrated in Figure 9. symmetry, which may be compared to more exacting results.
Evidently, resonance energy should involve an average overtiat is taking into account spin pairings regardless of their
all Kekule structures (within one resonance class) of the ”Umberrange, the number.#of unpaired electrons for a molecule as

of such local patterns of modification. Indeed, the so-called 5 \hole may be calculated in terms of the zero-order free
“conjugated circuits” modé? is formulated to manifest this quite  ajences for the different types of sites. Then the relation of eq

explicitly. But the usual PaulingWheland resonance theoretic 3 5 il holds if #, #xq, and #4 denote the numbers per unit
VB model on the basis of Kekule structures manifests this class- cell rather than pér mélecule (or alternatively, we might view

confined interactio*” just with a more involved sort of ~ the molecule as a whole as consisting of just one unit cell).
averaging. For typical highly resonant Kekule structures, this oy recalling that every bond has one starred and one unstarred
average number of possible local modifications should scale g counting bonds can be done in two ways: by counting the
with the numbe of sites, and indeed, this clearly is a bound dangling bonds out of starred sites (thereby giving # 2#x>

for the rapidity of scaling. Now also this average numbek) + 3#43) and by counting the number of dangling bonds out of

of such local modifications to yield new Kekule structures | ,starred sites (thereby giving#+ 2#, + 3#3). Thus
should be qualitatively related to the numberof Kekule ’

structures per site. Indeed, if one imagines that the number of + + —# 4+ +
local changes that can be made independently also is of the far t 20+ g = Hoy 2y T 3og (43)

Figure 5. Modified assignment of bond orders for the same boundary
as in Figure 3b. Note, however, that the same amount of residual free
valence (on the same type of sites) remains.

Figure 6. Example cutC on pyrene.

there is a kind of check on the preceding arguments,
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9 %
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Figure 7. Phenanthrene cut with partitionirgw®Co and the five associated Kekule structures.

Figure 8. Polymer strip with Kekule structures each with a different number (0 and &)bafnds crossing every unit cell boundary (and therefore
in two different resonance classes).

a dozen sites and with several high-quality configuration
interaction ab initio computations (as mentioned in reviews 38
and 39). Indeed, for conjugated hydrocarbons the number of
cases of experimental disagreement with this simple rule seem
to be much fewer than the cases of agreement (also as mentioned
in reviews 38 and 39). Therefore, this agreement lends support
to our resonance theoretic arguments (which not only predict
but also indicate to some degree the location of unpaired spins
and in some cases the strength of spin pairings, which, if
Figure 9. Two Kekule structures locally differing only at a single  between distant sites, lead to low-lying excited states where these
hexagon in the interior. weakly paired sites are unpaired). Also, theorematic results for

the sign of the spin density on the starred and unstarred sites
and of course, the total number of starred and unstarred sitesare availablé’ and are in qualitative agreement with the simple
are respectively given as resonance theoretic model.

—_—

e =Hey T He, tHyg and #=#, +#,t#; (4.4) 5. MO Theoretic Arguments

Then using relations 4.3 and 4.4, one may reexpress eq 3.2 as Quantitative MO theoretic arguments and computations are

the number of globally unpaired spins in a simple form on the whole more conventionally made than are VB theoretic
arguments and computations. There are different manners of
#,= [#, — # (4.5) establishing MO theoretic results, but in the treatment of edge

localization effects the most common approach so far explored
But with the identification of half of this as the net ground- attempts to treat different translationally symmetric edges
state spin (each unpaired electron contributing a spin of 1/2 to individually. In particular, polymer strips of arbitrary widtk

the net spin), one recovers a rigorous theorerffatisult for and with edges as in Figures 2a, 3a,b,d, and 4w have been
the nearest-neighbor (splf) Heisenberg model, which in fact  previously treated?~16 and (along with further work here) a
is equivalent to the PaulirngWheland VB model on the full general pattern of behavior emerges. Basically, bands labeled

covalent space. In fact, this result for the ground-state spin alsowith a one-dimensional wave vect&r(corresponding to the

agrees with the exact theorematic result for the Hubbard nibdel, translational symmetry along the polymer strip) arise and
with full configuration interaction computatioffson Hubbard- typically give orbitals that are smeared out not only along the
PPP for a fairly comprehensive list of structures up to around length of the polymer strip but usually also across the strip.
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&/\B] where one sees that the degree of edge localization is different
) at differentk values; for the present type of edge, localization
is stronger for largetk| values. The exceptional antibonding
orbitals give much the same densities as the bonding orbitals,
since these bonding and antibonding orbitals differ in amplitudes
only in being symmetric or antisymmetric across the strip, where
the node for the antisymmetric case occurs in the region where
even for the symmetric orbital the amplitude is very small (in
magnitude). Generally, symmetric/antisymmetric pairs of edge-
localized band orbitals approach degeneracy agreases, and
if one is bonding while the other is antibonding, then the
asymptotic degeneracy occurs at= 0, as is discussed in
Appendix C. Now any of the exceptional bonding and anti-
bonding near-degenerate band orbitals (if combined to exhibit
localization near just one edge) may be singly occupied with
orbitals of different spins for different edges to yield a UHF
wave function, which may be argued to be of lower energy than
~T ~n/2 /2 o the (Hickel theoretic) RHF solution. That is, the cost of the
Figure 10. Overall pattern of band structure for arbitrary width strips UHF wave function to the Fikel part of the energy of an orbital
with acenic (zigzag) edges. The bulk bands occupy the shaded region,0f wave vectok is proportional to the corresponding band gap
and the exceptional edge-localized bands penetrate into the regions Ay, which comes ever closer to O for ever wider strips when
< k< —27/3 and Z/3 < k < &, with the displayed bands being for  dealing with the noted exceptional edge-localized orbitals; on
the strips of widthsv = 1, 2, 3, and 4. the other hand, electron repulsion energy (proportional to the

2 Hubbard parametdd) is in such cases saved, since the UHF
| C,J orbitals on opposing edges are well separated with differential
overlap between orbitals on opposite edges decreasing expo-
0.5 nentially quickly asw increases. Thus, any such exceptional
band orbitals give rise (in the UHF approximation for a
04y ¢ Hubbard-PPP type model) to unpaired spin density near the
edges.
031 But granted such an overall computational scheme for the
recognition of edge-localized spin density, the question arises
027 b as to whether there might be any agreement with our simplified
resonance theoretic predictions. Indeed, the net amount of such
0.1y \ a unpaired spin density along the different edges for the cases of
‘ = Figures 2a and 3a,b and some other cases is found to be the
00 p 0 s 0 D same as predicted via the simple resonance theoretic argument.

. . . i . ) In fact, the density tends to be concentrated on just the same
Figure 11. Frontier orbital densities as a function of distance from . . . . -
the edge of a widthw = 20 graphitic strip with acenic edges. The sites as pret_jlcted via the simple resonance thgoretlc argument.
probability |c,|2 represents (in the notation of Appendix C) the quantity [After inclusion of the electrorrelectron interaction’s effect in
|(nale)|? + |(nbje)|? associated with a transfer matrix “propagation cell’ a UHF solution, the band gap is generally modified, as
(which in the absence of the edge would devolve into a unit cell of emphasized by Tyutyulkov et &,and this is not considered
graphite). here; the present point concerns its role in affecting the unpairing

of spins.] In fact, some of the details noted for the polypolyacene

Still, occasionally there are portions of some bands that are case carry over to other cases, with some of the results best
exceptional; thesedge-localizedrbitals, though smeared out  enunciated in terms of the edge symmetry classification idea
along the length of the polymer, fall off overall exponentially involving the &y) labeling explained near eq 3.1. Generally, it
in amplitude with distance from the edges and are very nearly seems that the vs k band diagram may be partitioned into two
nonbonding (rapidly approaching nonbondedness exponentiallyregions corresponding to whether there can occur edge-localized
with strip width). For instance, within the Kliel theoretic orbitals. And for edge symmetriex,y) = (1,0), these two
approximation for the polyacenic edges of Figure 3a the band regions are just as enunciated for the polypolyacene case of
energies = |Ble appear as indicated in Figure 10 with the bulk  Figure 10, where the region without edge localization is shaded.
of the bands for any widtlhw being confined to the shaded That is, for &y) = (1,0) it may be demonstrated as indicated
regions indicated there. Indeed, there is but a portion of a singlein Appendix D that all edge nonlocalized orbitals are confined
bonding band (and a single corresponding antibonding band) (for semi-infinite graphite) in the shaded region, which may be
that penetrates outside this shaded region, and it is that of thegiven analytically as bound by
exceptional orbitals. This exceptional band portion is shown
for the case of widthsv = 1, w = 2, w = 3, andw = 4 in the e =+{2cosk/2) + 1} 8 (5.1)
first, second, third, and fourth quadrants of thes k plot of
the figure, where one sees that this exceptional band portionAnd any edge-localized orbitals that might occur would only
tends to close in on the nonbondiag= 0 Fermi level in the arise in the unshaded region near #ve 0 Fermi level. Then
region where 2/3 < |k| < & as the strip widthw increases. for the limit of very wide strips any nonbonding bands
Figure 11 shows the mean density (averaged over neighboringpenetrating into this unshaded region would cover sections of
starred and unstarred sites) across=a 20 strip for the bonding 13 0r %/5 (or all) of the full range ok-values, and just as for the
orbitals of exceptional type & = 0.757, 0.857, and 0.9%, resonance theoretic case, the consequent net number of unpaired
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&/|B| energies very close to nonbonding energies at 0 and are
clearly manifested in these plots. Finally, in a general vein (for
general x,y) symmetry) the shadow regions always touch the
nonbondinge = 0 position atk = +x/3 or k = +27/3 if x —
y is not divisible by 3, and dt = 0 otherwise, all is consistent
with our band theoretic picture supporting the symmetry
integrality condition for unpaired electrons derived in the
resonance theoretic picture. Incidentally, the number of unpaired
electrons per unit cell of edge is then an integer multiple of 3.
These general results are argued in Appendix E. Overall support
for the simple resonance theoretic predictions is obtained.
Particularly, Fujita and co-workets4 have made band
theoretic computations on a number of different width strips
with different edges of a few particular types. Their edge types
included the zigzagx(y) = (1,0) edge as in Figure 3a, the arm-
-7 0 n chair &,y) = (1,1) edge as in Figure 2a, and a few mixed zigzag/
Figure 12. Overall pattern of band structure for arbitrary width strips @rM-chair edges as in Figure 4l,w. Generally, they found that
with edges alternating between acenic (zigzag) and quinoidal structures,for the investigated strips of increasing widths, edge-localized
as in Figure 4h. The bulk bands occupy the shaded regions in the large-band orbitals are in correspondence with the expectations
width limit, and the exceptional edge-localized bands penetrate into outlined in the two preceding paragraphs. For a finite-width strip
the regions—z =< k < —27/3 and /3 < k =< &, with the displayed a3y such edge-localized orbitals from just above and below the
bands being for the strips of widtve =1, 3, 5, and 7. Fermi level should then pair to give a UHF solution with even
greater localization and less electron repulsion. They emphasized
the edge-nonlocalizing behavior of the arm-chair edge structure,
as contrasted with the edge-localizing behavior of the zigzag
edge structure, and described it as “remarkable” that in the mixed
zigzag/arm-chair case the zigzag structures engendered localiza-
tion despite the presence of the delocalizing arm-chair structures.
But all this is fairly easy to understand from the resonance
theoretic considerations, which, for the type of mixed cash (
that they considered, readily lead to a prediction»of-(1)/3

edge-localized electrons per unit cell would be an integer
multiple of /5. Forx > 2 andy = 0 what apparently happens

is that again there are two similar regions, with the shaded edge-
nonlocalized region obtained from the corresponding 1
shaded region by first folding the plot so that all of the plot is
precisely confined to a wave vector range wikh < z/x and,
second, rescalingg by a factor ofx so that the wave vector
range becomesxr < k < +u. Thus, forx = 2, folds are made

atk = &/2 and then théevalues doubled, where for the,Y) f unpaired electrons per unit cell of edge. In the last column of

= (2,0) edge symmetry of Figure 4h a band diagram plot o . . .
Figure 12 results. There the bands penetrating into the edge-TabIe 1 these and other band theoretic computations for various

localized regions in the first, second, third, and fourth quadrants edges are .iden.tified .by reference.. Ba”ff' the?retic work in the
are for strips of widthsw = 1, 3, 5, and 7, with the current article is designated by either “here” when there are

edge-localized bands converging more closely te 0 as the explicit computations or by a parenthetic “(here)” when .there
width increases. Here, part of the shaded region is shown as®'® mgre compleéeDan?lytlc t.rehatrﬁendt.s fw:. 0 (as in .
singly shaded and part as doubly shaded, in correspondence Witl‘ﬁppen_ ices C anc along with t € discussion concerning
how the singly shaded regions »f= 1 fold over one another B“”OU'F‘ zone folding). lt IS emphasized that all '_[hese band
in the construction for the shaded region for te 2 case. In theoretic results, both particular and general, are in agreement
the doubly shaded region one can anticipate that on the averagé""th th_e S|mple resonance theoretic predictions for t_he limit of
the density of states is twice that as in the singly shaded regions’€"Y vl\/lde strips. There are some other band theoretic computa-
(because the folding of the band diagram is just a means fortlon§ on polyacenic stnps. of general W|dths, but the results
enlarging the unit cell while correspondingly diminishing the have notfocused on analyzing the band orbitals to test for edge-
Brillouin zone, though the bulk orbitals being dominated by !0calization discussed here, though as we emphasize, this is very
the interior is not really changed, since the rationale for the important in characterizing their (reactivity and magnetic)
enlargement of the unit cell is only manifest near the edges). In Properties.

Figure 12 there are additional bands n&ar O penetrating There is further support for the simple resonance theoretic
outside the shaded region though they are not soceald; as predictions in Stein and Brown’s computatidfi$on large finite
w increases, these bands remain well away feom 0 in the fragments (of up to 230@-centers). They treat sequences of

nonshadow region, and upon examination they are found to beincreasingly larger hexagonal symmetry fragments with different
edge-localized. But these additional edge-localized orbitals beingtypes of edges as in Figures 2a,b and 3a,c, and they find frontier
bonding should (for the neutral hydrocarbons) be doubly orbitals with densities concentrated along the edges precisely
occupied in UHF wave functions and so do not contribute to in the cases (namely, those of Figure 3a,c) where the resonance
unpaired spin density. Related types of plots are shown in Figuretheoretic argument predicts locally unpaired spin density.
13 for the &,y) = (2,0) edges of Figure 4k,l, as occur on strips Moreover, their edge-localized orbitals are evidently those with
of large widths W = 20); here, all the eigenvalues (for positive energies most near= 0, and they approach= 0 much more

k) are shown at a selection of 25 equally spake@lues from rapidly than the cases without edge localization. Further, most
k = 0 to k = &, where now the densities of the bands in the of the density of the edge-localized fronteir orbitals seem to
earlier shaded regions can be directly perceived. But also showngenerally appear in the same atomic locations as indicated from
in Figure 13 is a similar plot for a widthv = 23 strip with the resonance theoretic arguments. They do not seem to have
(xy) = (2,1) edges of the type in Figure 4m and also for a checked how many other orbitals beyond the frontier orbitals
width w = 25 strip with &,y) = (1,1) edges of Figure 4e. In all  might be edge-localized, and perhaps accurate estimates would
these cases for fairly wide strips the edge-localized orbitals havebe confounded by the finite sizes of their fragments. Presumably,
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Figure 13. Band eigenspectra displayed at a selection ok2&lues uniformly spaced frork = 0 to k = &. The structures for the four cases
shown are (ayv = 20 with edges as in Figure 4k, ()= 20 as in Figure 4l, (cjv = 23 as in Figure 4m, and (dy = 25 as in Figure 4e. In parts
a and b the boundaries of the described “shaded regions” are drawn in.

TABLE 1: Edge Symmetries and Edge-Localized Unpaired because it is precisely these structures that lead to an extra
Electrons per Unit Cell of Edge density of near-nonbonding occupied orbitals).
structure in primitive unpaired band (or MO) Further, there is some relevant theoretical evidence from early
Figure4  translationky) electrons # theory refs work by Dewar and Longuet-Higgirf.Their general results
a (1,0) 1/3 12,13, (17, 18, are neatly explained in terms of tRawling freevalence which
20), here for a sitei of a benzenoid G we define as the fraction of global
b (1,0) 2/3 16, (here) Kekule structures that leave siieunpaired. Basically, for
¢ (1,0 1/3 (here) monoradical benzenoids Dewar and Longuet-Higgins establish
d (1,1) 0 (17, 18), 15, 12, L .
13 a quantitative correspondence between such Pauling bond orders
e (1,1) 1 here and Hickel MO orbital amplitudes for the nonbonding orbital.
f (1,1) 0 But these Pauling free valences are just a bit more sophisticated
g (1,1) 0 type of bond order than the implicit bond orders we have used,
h (2,0) 173 here so this is further support for the general correspondence between
J! ggg gg gﬂg;g; MO and resonance theoretic results.
Kk (2’,0) 1/3 (17, 18), here As a result of the various computations and the various partial
I (2,0) 2/3 here proofs we have now noted, it is natural to speculate the
m (2,1) 1/3 14, here fo||owing_
2 gB gg For the correspondence conjecture, let G be a semi-infinite
P (2: 1) 4/3 bipartite graphitic carbonz-network with a translationally
q (2,1) 2/3 symmetric edge without anyndrings. Then for the Hckel
r (2,2) 0 model of G, there are nonbonding edge-localized band orbitals
S (2,2) 1 whose number matches that of the unpaired electrons predicted
L (ég)) 8 ((ggge)(here) from the simple resonance theoretic argument.
v (3:0) 0 (heré) Indeed, there are even further natural speculations: about the
w (3,1) 2/3 14 exponential degree of edge localization, about the locations of

the exceptional orbitals in the band diagram (outside the densely
a UHF treatment from these orbitals would similarly yield populated shaded region), about modifications appropriate for
unpaired spin density in the proper amounts along the edges,a finite-width strip, about the associated form of UHF solutions,
though this does not seem to have been carried out to the extenand about the tendency for the locations of the associated
already done for the polymer strips of the preceding paragraph.unpaired spin density.
The cases they have treated are also indicated in the last column Finally, a few words may be said concerning the extension
of Table 1 with reference numbers enclosed in parentheses.beyond simple Hckel MO theory. The extension to include
Again, all that they do report is consistent with the simple electror-electron repulsion and associated exchange interaction
resonance theoretic picture. Several other finite fragmentis of course implicit in the consideration of UHF theory for
computations by other researchers do not seem to have beetdubbard-PPP extended Hikel models, which we have already
analyzed for edge localization. But softhenave concerned  found is a necessary step in understanding the origin of unpaired
themselves with the rate at which the overaklectron energy electrons within the MO picture. But there are further ap-
of increasingly larger clusters approach that of graphite, finding proximations, say as concerns the restriction of electron-hopping
that precisely those that we identify as having edge-localized integrals ;) to constant values for nearest-neighbor sites only
states show the slowest convergence (as we see should occuor as concerns the neglect of intersite overlap. Clearly, in the
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interior of a wide strip the bond lengths should retain their bulk- |
favored uniform bond lengths, where the shadow regions for
the bulk orbitals should remain the same. Near the edges
different 7-bond orders may of course be different, thereby
giving different bond lengths, which in turn enhaneébond
localization and the validity of the classically interpretable VB
theoretic picture. Another type of modification would be in terms
of an “extended Hckel” model with intersite overlaps and
nonneighbor electron-hopping integrals, and this is considered
in Appendix E where we find that much of the simplédkel
based argument is only slightly altered.

6. Conclusion and Prospects ‘

. . Figure 14. Special type of reference,f) edge.
Simple structural rules governing the occurrence of free

valences (or of locally unpaired spins) on graphitic edges have
been developed. These rules are somewhat intuitively derived
(from chemically appealing resonance theoretic ideas) in section
2, and the rules are enunciated in section 3 in conjunction with
Figures 3. Numerous particular predictions are made in Table

It might be noted that some aspects of our resonance theoretic
arguments carry much beyond the current focus on translation-
ally symmetric graphite edges. Some ideas should carry over
quite straightforwardly to deal with graphite with local defects,

. X . X ) either at the edge or internally. But more generally, some of
1 (along with the associated Figure 4) in section 3, and some e jqeas of section 3 hold for quite general bipartite conjugated
generz_al predictions are mao_le in a theore.”?-_ It is noted t.hat thenetworks. Even the simple resonance theoretic ideas should be
rules find general support: first, from the |n|t|aI_Iy noted simple  yeated more tentatively for the case of bipartite systems with
(vet presumably correct) resonance theoretic arguments (Oftq - cyeles (i.e., they should be viewed as subject to qualification

section 2); second, from more elaborated resonance theoretiG, g ification) because interaction around conjugated 4
VB arguments (of section 4); third, in studied cases (especially circuits is not stabilizing (as is the essence 6tkil rule). Still,

with translationally symmetric edges) from MO or band theoretic o6 is notable interest in resonance theoretic models for quite

arguments (as in section 5). _ o different systems, e.g., those involving the square-planar lattice
The commonality of MO and VB theoretic predictions for o the understanding of high-temperature supercondu€tion

the same structures indicates a robustness for these particulaggq Pauling’s theory of metat&Hopefully, the ideas developed

predictions because of the quite different presumptions going here might still prove to be useful in other such areas.

into the MO and VB models. Thus, apparently the rules and

particular predictions (given in section 3) seem to hold  acknowledgment. Acknowledgment is made for discussions

exceptional promise for guidance as to the character of different,, i, many colleagues and for support from the Welch Founda-
possible edges conceivable for graphitic fragments. Presumably tion of Houston. Texas.

the edges with higher concentrations of edge-localized unpaired
electrons would be reactive (as polyradicals) and under many
preparatory conditions undergo additional reactions to quench
this free valence. Notably because of the “symmetngegral- First, for symmetry clas(y), consider a special edge as in
ity” theorem of section 3, if an edge of translationally symmetry Figure 14. For this special case there are no degree 1 sites, so
(xy) is such thak — y is not divisible by 3, then such reactions eq 3.2 reduces to#= |#x2 — #02|/3, and as seen from Figure
at the edge, to decorate it with a nonradical structure, would 14, the degree-2 apex sites along xhdirection are of one type
take place in such a way that the translational period is tripled (chosen ask in the figure) while the degree-2 apex sites along
(so that the new andy being triples of the old would have the y-direction are of the other type (hef@ in the figure).
— y divisable by 3). The ideas here incidently rationalize a Further noting that the numbers of these two types of sites are
number of earlier particular observatiofis!417-20,.31-33,41,42 respectivelyx andy, one sees that#= (x — y)/3, and the claim
which were deemed unusual at the time but are evidently due of the theorem is established for this particular type of edge.
to our (readily predicted) correlations between edge structure  Next, it is to be shown that however the unit cell of edge of
and edge-localized orbitals. a given &y) is modified, by adding (or subtracting) new sites

In addition to the influence of edge-localized orbital on from the special case of Figure 14, it turns out thas#modified
chemical reactivity and magnetic properties, one might generally from the reference valug-(x — y)/3 by an integer, so (if this
inquire about influences on electrical conductivity. But in this can be shown) the integerness (or nonintegerness), a¢ #
case elaborate (e.g., ab initio) computations seem to be requiredconserved. Consider adding edges one at a time, where two
Though at the Hckel level the edge-localized orbitals are patterns of connection to already preexisting sites are possible
precisely at the crucial Fermi level, we have emphasized that depending on whether the new site is attached to 1 or 2 of the
they split apart in a UHF solution of a Hubbar8PP model. earlier sites. Labeling the new site added by * and the site(s) to
But the considerations are not complete because the bulk orbitalsvhich it is attached byO, one obtains the two connection
have low density at = 0, and in fact, also the gap evidently patterns of Figure 15. For the single attachment case if the * is
opens slightl§* for multilayer graphite. But also in extended starred, then this attachment process adds a (zero-order) spin
Huckel theory one may expect the edge-localized orbitals to density of+2%/3 at site * while the (zero-order) spin density at
lower slightly in energy (as discussed in Appendix F) so that the attachment sit® is decreased by-%/3 (from —2/3 to —1/3
the upward split edge-localized orbitals may conceivably end or else from—1/3 to 0), so the net change in spin densityHs.
up being quite close to the Fermi level and thereby affect the If * is instead unstarred, then the net change in spin density is
conductivity. Here, the delicacy of the effects makes an ab initio —1. For the case of Figure 15 the double-attachment process
treatment desirable. likewise yields a net change in spin density-bf. Thus, for

Appendix A: Proof of Symmetry—Integrality Theorem
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Figure 16. Unit cell for (x,y) = (1,0) is shown in part a, and in part
b for the solution of the Hekel model there appears the associated
: ! : ! quasi-one-dimensional graph (witadependent weights*#x on the
Figure 15. Processes for single and double attachments of one new directed edges).

site O to one or two preexisting sites labeléd

Evidently, these new eigenorbitals are energetically split but
each modification adding a single site, the integerness is very slightly frome, and this splitting will rapidly approach 0
conserved. And yet, it must be conserved on subtraction of sitesas the width is increased. These asymptotically degenerate
(since starting with the site depleted, edge addition of sites orbitals then make the orbitalgs and oy that are localized on

conserves integerness). Thus, the theorem is proved. opposite edges good candidates for UHF eigenorbitals if the
splitting makesy+ andiy - bonding and antibonding. Further,

Appendix B: Proof of the Pairing—Conservation the strip construction implies that the reflectiointerchanges
Theorem starred and unstarred sites. Therip andy as well as iny+

To establish the pairing conservation theorem of section 4, @hdy- the roles of starred and unstarred sites are interchanged.
we presume a cu to which are associate@y andCo. For a Hence, often)+ andy - are just the paired orbitals of Coulson
given Kekule structureK there is a valueA(C,K) for the and Rushbrook®; where they have energies oppositely dis-
difference between the number of edges<ofn Cy« and Co, placed from 0. In such a case with asymptotic degeljeracy, they
and we leSx(C,K) andS(C,K) denote the respective numbers areé both close te = 0 and asymptotically nonbonding.
of starred and unstarred sites on the A-sideCafuch that all One may conversely presume a length of band of essentially

the sites of thes&x(C,K) are bonded to other sites in A. Of ~honbonding eigenorbitals. Though the band gap (or HOMO
course, some of the sites in A may be bonded to sites on theLUMO) for graphite is 0, it is known that the bulk density of
other side B, and the numbers of such starred and unstarrecStates drops to 0 at this energy. Thus, the orbitals corresponding
sites evidently arik NCx| and|KNCo. Thus, the total numbers {0 such a band portion shpuld generally not be bulk orbitals,
#x(C) and #(C) of starred and unstarred sites on the A-side of Where they are edge-localized.

the cutC may be decomposed as
y P Appendix D: Band Characteristics for (x,y) = (1,0)

#,(C) = |S¢(C,K)| + [KNC,| and Edges

#-(C) = |S(C,K)| + IKNCy| It is wished to establish the band diagram locations of edge-
nonlocalized and edge-localized band orbitals when the edges
Then from this and the fact that fé£ the numbers of starred  are associated with a symmetry withy) = (1,0). In this case
and unstarred sites bonded within A must be equal (for a the unit cell is just one hexagon in width and may be chosen to
bipartite graph), it follows that be of the shape indicated in Figure 16a. Then thekel
eigenvalue problem ik-space takes (see, for example, ref 47)
#4(C) — #(C) = {IS(C.K)| + [KNC, [} = {ISH(C,K)I + the form of a graph theoretic adjacency matrix eigenvalue
IKNCy|} = £A(C,K) problem with a weighted adjacency matrix for a weighted graph
as indicated in Figure 16b, where the solid edges are of weights
Since the left-hand side of this equation is independentof ~ / and the dashed edges are of weightst'¥, with the+ or —
so must be the right-hand side, and the proof is complete. sign applied here as the element corresponds or anticorresponds
to the edge direction. Evidently, this matrix appears much like
Appendix C: Edge Localization, Asymptotic Degeneracy, that for a linear chainlike problem, with a period of repetition
and Nonbondedness every two sites, so that the sites might be numbered as indicated
in Figure 16b. Then lettinge) denote the Hekel eigenvector
with a p,cth component f,cl¢), the eigenequation may be
expressed in the form

First, for semi-infinite graphite, let us suppose an energy
edge-localized eigenorbitgl, with amplitudes decaying rapidly
into the interior. Identify a sequence of bonds at a given large

distanced from the edge such that this sequence exhibits the B.(p,ble) + Blp+1ple) = e(p.ale)
same translational symmetry as the edge. Then presuming that A ’ ’
these bonds when cut end up disconnecting the edge from the B(p.ale) + f_(pt+1ble) = e(p,ble) (D.1)

interior at distances greater thdnimagine a reflected duplicate

of this strip and form a strip of widthdby joining these two wheref. = B(1 + %) and the integer indeg is large enough
halves together. Since the considered orhjtdlas decayed to  to represent a position away from the edge. Following a general
a very small amplitude at the (large) distamt®ne can expect  “transfer matrix” technique that has proved to be useful for
symmetric and antisymmetric combinatiopst oy = 14+ and open chair® and with boundary staté8?° eq D.1 can be

Y — oy = - to be (essentially) the eigenorbitals of the strip. rewritten as
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50 [\(pble)) \-B- &

Or if the left-hand-side matrix is inverted, then it appears as
_ 1 (- b

( )_ ﬂﬂ_(eﬁ —ﬁm)(

Here, there appears on the right-hand-side a 2 transfer
matrix T, which carries the eigenfunction amplitudes at position
p to the eigenfunction amplitudes at positign+ 1. And
evidently, these amplitudes will propagate without diminution
or growth (i.e., lead to a bulk smeared out orbital) if and only
if the eigenvalues tol are of unit magnitude. Now these
eigenvalues td are

(pt1lale)
(pt+1ble)

(D.2)

(pt+1ale)
(p+1.ble)

(p.ale)

(p.b|e)) (0-3)

X, =) {f—1-F+
[(2—1— A — 4c)¥ Y2 (D.4)

where abbreviations = ¢/|f| andc = 2 cosk/2) have been
used. Now if the discriminant is negative, then

X, =(20) (¢ —1— A+
[4c® — (2 — 1 - A}?=1 (D.5)

Klein and Bytautas

Figure 17. Band theory graph for the graphite unit cell.

For edges of symmetryxfy) the basic translation defining
the edge-attentive unit cells involvassteps in thex-direction
andy steps in they-direction, so the wave vector associated
with such a translation is

k= xk +yk
and the bulk graphitic energies expressed in terms of this are

€ = |1+ explik — yk)/X] + exp(k)]

(E.2)

(E.3)

The shadow region then is at a givkiby the envelope of this
function ask, varies between-zr and-+s. And of special interest

is where the shadow region touches the (nonbonding) Fermi
level ate = 0. From eq E.1 it is evident that the graphitic bands
touche = 0 only at two wave vector values, namel, k) =
+(27/3,—27/3), which then corresponds to a edge-attentive
wave vector of

k= +27(x — y)/3 (E.4)

so the associated orbital has components that penetrate without

diminution of magnitude into the interior. Thus, the condition
for edge nonlocalization of an orbital is that the discriminant
in eqs D.4 and D.5 be nonpositive:

(€—1-c)?—4c*<0 (D.6)
Or with factorization and a focus on strict inequality, this
becomes

(e—1—-c)e+1+c)e—1+c)(e+1—0¢c)<0 (D.7)

(where the special case of equality leads to Bizco’s “intermedi-
ate” orhital8%. Then to satisfy eq D.7, either one or three of
the factors on the left-hand side of this equation are to be
negative, and it follows that the nonlocalized band orbitals have
energies confined to the shaded areas of Figure 12, with the
shaded areas having boundaries given by eq 5.1.

Appendix E: k-Space Location of Nonbonding Shadow
Region

The shadow region is determined by the delocalized or bulk
orbitals, which are on the whole like those in extended graphite.
Thus, the shadow region in the Brillouin zone should be
determined from the solutions for extended graphite, for which
there are two independent translational symmetries, which we
take to be in thex- and y-directions identified in the charac-
terization of edge symmetries, near eq 3.1. Then the graphitic
Hickel model reduces to the solution of ax22 matrix with
wave-vector-dependent elements. This matrix can be viewed
as equivalent to that for the adjacency matrix for a weighted
graph, as in Figure 17, with thhe andy-directed edges with
weights etk andj ef’%. Therefore, this matrix has diagonal
elements of 0 and one off-diagonal elemgft + €% + &4},
while the other is the complex conjugate of this. Thus, the orbital
eigenvalues for extended graphite are

e=+p|1+ %+ Y (E.2)

which of course we take modulor2(to fit it into the first
Brillouin zone). That is, there are just three manners in which
the shadow region touches= 0, namely, at

k=0,
k= +n/3,

if X — yis an integer multiple of 3

if |x —y| is 1 more than an integer multiple of 3

k= +27/3,
if [x—y| is 1 less than an integer multiple of 3 (E.5)

Further, because from Appendix C the edge-localized orbitals
must, for the Hekel model for semi-infinite graphite, be
nonbonding, any edge-localized band would proceed €aD)
between thek locations of eq E.5 allowed for the particular
(x,y) involved. That is, for example, for the last case of eq E.5,
any edge-localized band would cover thepace regions either
with 27/3 < |k| < 2 or with 0 < |k| < 27/3. Thus, the number

of unpaired (edge-localized) electrons per edge-attentive unit
cell is necessarily a multiple df;, and ifx — y is divisible by

3, it must be an integer.

Appendix F: Extended Huckel Theory

The simplest version of extended tkel theory! entails
inclusion of overlapsto nearest neighbors and of next-neighbor
electron-hopping integral§'. Let A be the (nearest-neighbor)
adjacency matrix so that the ordinary ¢kel matrix isH = al
+ BA, though often one takeas = 0, since this only shifts the
one-electron eigenspectrum (though retaining a nonzero value
would be important in dealing with ionization energies).
Similarly, let A" denote the matrix of next-nearest-neighbor
“adjacencies” so that the slightly extendeddkal model we
consider has Hamiltonian and overlap matrices

H =aS+pA+ 5 A

and S=I1+sA (F.1)

One may verify that if we lefA denote the diagonal matrix of
site degrees, then
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A'=A’—A (F.2)

But except for the edges\ is the same asl3 so for bulk
properties 8 — A is a negligible perturbation. That is, for bulk
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